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Editors: Härmel Nestra, Reimo Palm

Estonian Mathematical Olympiad

http://www.math.olympiaadid.ut.ee/



Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds: at
the school, town/regional and national levels. The best students of each
round (except the final) are invited to participate in the next round. Every
year, about 110 students altogether reach the final round.
In each round of the Olympiad, separate problem sets are given to the

students of each grade. Students of grade 9 to 12 compete in all rounds,
students of grade 7 to 8 participate at school and regional levels only. Some
towns, regions and schools also organize olympiads for even younger stu-
dents. The school round usually takes place in December, the regional
round in January or February and the final round in March or April in
Tartu. The problems for every grade are usually in compliance with the
school curriculum of that grade but, in the final round, also problems re-
quiring additional knowledge may be given.
The first problem solving contest in Estonia took place in 1950. The next

one, which was held in 1954, is considered as the first Estonian Mathemati-
cal Olympiad.
Apart from the Olympiad, open contests are held twice a year, usu-

ally in September and in December. In these contests, anybody who has
never been enrolled in a university or other higher education institution is
allowed to participate. The contestants compete in two separate categories:
Juniors and Seniors. In the first category, students up to the 10th grade can
participate; the other category has no restriction. Being successful in the
open contests generally assumes knowledge outside the school curriculum.
Based on the results of all competitions during the year, about 20 IMO

team candidates are selected. IMO team selection contest for them is held
in April or May; in recent years experimentally in two rounds. Each round
is an IMO-style two-day competition with 4.5 hours to solve 3 problems
on both days. Some problems in our selection contest are at the level of
difficulty of the IMO but easier problems are usually also included.
The problems of previous competitions can be downloaded at the Esto-

nian Mathematical Olympiads website.
Besides the above-mentioned contests and the quiz “Kangaroo” some

other regional and international competitions andmatches between schools
are held.

*

This booklet presents the problems of the open contests, the final round
of national olympiad and the team selection contest. For the open contests
and the final round, selection has been made to include only problems that
have not been taken from other competitions or problem sources and seem
to be interesting enough. The team selection contest is presented entirely.

1



Selected Problems from Open Contests

O1. (Juniors.) Juku conjectured the following in his mathematics circle:
whenever the product of two coprime integers x and y is divisible by the
product of some two coprime integers a and b, at least one of x and y is
divisible by a or b. Does his proposition hold?
Answer: No.
Solution. Let x = 20, y = 21, a = 14, b = 15. Then x and y are coprime, as

they are consecutive, similarly a and b are coprime. The product xy = 420
is divisible by ab = 210 but neither of 20 and 21 is divisible by 14 or 15.

O2. (Juniors.) Solve the system a3 + b = 4c, a+ b3 = c, ab = −1.
Answer: a = 1, b = −1, c = 0; a = −1, b = 1, c = 0; a = 2, b = − 12 ,

c = 15
8 ; a = −2, b = 1

2 , c = − 158 .
Solution 1. From the third equation we get b = − 1a . By substituting this

in the first and second equations we obtain a new system: a3 − 1
a = 4c,

a− 1
a3

= c. If c = 0, we have a3 = 1
a and a

4 = 1, whence a = 1 or a = −1,
since a = 0 is not possible. We have respectively b = −1 and b = 1. If
c 6= 0, then by dividing in this system the sides of the first equation by the
respective sides of the second equation, we obtain (a3 − 1

a ) : (a− 1
a3
) = 4.

As a3 − 1
a = a2 · (a− 1

a3
), this is equivalent to a2 = 4, whence a = ±2. If

a = 2, then b = − 12 and c = 15
8 . The case a = −2 gives the same solution

with opposite signs.
Solution 2. By adding the first and second equation we get a(a2 + 1) +

b(b2 + 1) = 5c. Since 1 = −ab by the third equation, this equation is equiv-
alent to a(a2 − ab) + b(b2 − ab) = 5c or, equivalently, (a2 − b2)(a− b) = 5c.
By subtracting the second equation from the first equation in the initial sys-
temwe obtain a(a2− 1)− b(b2 − 1) = 3c and by similarly substituting from
the third equation we obtain a(a2 + ab)− b(b2 + ab) = 3c or, equivalently,
(a2 − b2)(a+ b) = 3c. Hence if c = 0, then a− b = 0 or a+ b = 0. By the
third equation a = b is not possible. The case a = −b gives two possibilities
a = 1, b = −1 and a = −1, b = 1. If c 6= 0, we obtain a+ba−b = 3

5 , whence
a = −4b. By substituting into the third equation of the initial system we
obtain −4b2 = −1, whence b = ± 12 . If b = 1

2 , then a = −2 and c = − 158 .
The case b = − 12 gives the same solution with opposite signs.

O3. (Juniors.) Find all possibilities: how many acute angles can there be in
a convex polygon?
Answer: 0, 1, 2, 3.
Solution 1. A square has 0 acute angles, a right-angled trapezium has 1

acute angle, an obtuse triangle has 2 acute angles, an acute triangle has 3.
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Let us show that 4 or more acute angles is not possible. Bymoving along
the boundary of the convex polygon, we turn at vertices in only one direc-
tion (for example left), and on arrival at the initial vertex we have turned a
total of 360◦. In an acute-angled vertex the direction changes by more than
90◦ (the change of direction equals the size of the respective exterior angle
which is obtuse in this case). Thus if in the polygon there were 4 or more
acute angles, the total turn in only those would be more than 360◦.
Solution 2. In a regular pentagon all angles have size 3·180

◦
5 or 108◦, thus

there are 0 acute angles. By prolonging two sides in one direction, the angle
of the pentagon at the moving vertex is reduced. As the angle between
the extensions of two non-neighbouring sides is 180◦ − 2 · (180◦ − 108◦),
which equals 36◦, the receding angle can be given size 60◦ without losing
the convexity of the polygon (Fig. 1). By prolonging the already prolonged
side in the other direction, we can similarly create another acute angle of
size 60◦ (Fig. 2). Finally let as move the opposite vertex of the prolonged
side away from that side. This can be done without losing convexity until
there is an acute angle also at that vertex (Fig. 3). Indeed, as in this process
the unchanging angles have size 60◦, totalling 120◦, the convexity of the
pentagon is lost only when the size of the reducing angle reaches 60◦, when
the pentagon becomes a regular triangle.
On the other hand, when x angles of a convex n-gon are acute, then the

sum of their sizes is less than x · 90◦ and the sum of the sizes of the other
angles is less than (n − x) · 180◦. But the sum of the sizes of the interior
angles of any n-gon is (n − 2) · 180◦. Therefore we get (n − 2) · 180◦ <

x · 90◦ + (n− x) · 180◦, whence x · 90◦ < 2 · 180◦ and x < 4. Thus there can
only be 0 to 3 acute angles in a convex n-gon.

O4. (Juniors.) Does there exist a positive integer n which has exactly 9
positive divisors and whose all divisors can be placed in a 3-by-3 table such
that the products of the 3 numbers in each row, each column and on each
diagonal are all the same?
Answer: Yes.
Solution 1. The number 36 has 9 positive divisors 1, 2, 3, 4, 6, 9, 12, 18, 36.

Let the first row be 18, 1, 12, second row 4, 6, 9, and third row 3, 36, 2. Then
the product of each row, column and diagonal is 216.
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Solution 2. For each prime p the number p8 has exactly 9 divisors p0,
p1, . . . , p8. It is known that the numbers 1 to 9 can be placed as a 3 × 3
magic square, with an equal sum of the numbers in each row, column and
diagonal. By subtracting 1 from each number, we reduce the sum of each
row, column and diagonal by 3. By replacing in the magic square each
number i by the respective power pi we obtain a placement of the divisors
of p8 in which each row, column and diagonal has an equal product.
Remark. There are other suitable examples. It can be shown that for each

positive integer n with exactly 9 positive divisors its divisors can be placed
as a 3× 3 table, with the products of the numbers of each row, column and
diagonal all equal. Consider the formula for the number of divisors

δ(pα1
1 . . . p

αk
k ) = (1+ α1) . . . (1+ αk).

To have 9 divisors we have two possibilities: a) k = 1 and 1 + α1 = 9,
whence n = p8 for some prime p, and the divisors are p0, p1, . . . , p8; b)
k = 2 and 1+ α1 = 1+ α2 = 3, whence n = p2q2 for some distinct primes
p and q, and the divisors are 1, p, p2, q, pq, p2q, q2, pq2, p2q2. Placing the
divisors as

p3 p8 p1

p2 p4 p6

p7 p0 p5

pq2 1 p2q
p2 pq q2

q p2q2 p

gives respectively the product p12 and p3q3 in all directions.

O5. (Juniors.) Juku thought of a 3-digit number that, when reversing the
order of the digits, stays the same 3-digit number. Juku noticed that when
adding 2016 to that number, the 4-digit number that arises is again the same
4-digit number when reading the digits from right to left. What number did
Juku think of?
Answer: 646.
Solution. Let the number be aba and let the number we get by adding

2016 be cddc. Clearly c can only be 2 or 3.
If c = 2 then by the ones digit the only possibility is a = 6, and we have

a carry from the ones to the tens digit. By the tens digit then b + 1+ 1 =
d or b + 1 + 1 = d + 10. The second option is impossible, since by the
hundreds digit we can only have d = 6, if there is no carry from the tens
to the hundreds digit, and d = 7, if there is a carry from the tens to the
hundreds digit. Thus b + 2 = d. Then there is no carry to the hundreds
digit, hence d = 6 and b = 4.
If c = 3 then in adding the hundreds digits we must have a carry to the

thousands digit which is possible only when a = 9. But by the ones digit we
should have c = 5. The contradiction shows that this case is not possible.

O6. (Juniors.) a) Let a and b be arbitrary positive integers of equal parity.
Canwe always find noninteger numbers x and y such that x+ y and ax+ by
are integers? b) The same question when a and b have different parities.
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Answer: a) Yes; b) No.
Solution 1. a) By taking x = y = 1

2 we have that x + y = 1 is an integer

and so is ax+ by = 1
2 (a+ b), since a+ b is even by the assumption.

b) We notice that ax + by = a(x+ y) + (b− a)y. Assume that x+ y and
ax+ by are integers. Since a(x+ y) is an integer, since it is a product of two
integers, (b− a)y must be an integer as well. But in the case b− a = 1 this
is not possible, since y is noninteger by the assumption.
Solution 2. a) If a = b then any noninteger numbers x and y whose sum

is an integer will be suitable as in this case ax + ay is an integer, as it is a

product of two integers a and x + y. In the case a 6= b we can take x = 1
a−b

and y = a−b−1
a−b , as in that case x+ y = 1 and

ax+ by =
a

a− b +
b(a− b− 1)
a− b =

(b+ 1)(a− b)
a− b = b+ 1.

b) Assume x + y = n and ax + by = m, where n and m are integers.
By interpreting this as a system of equations and solving for x and y we

obtain x = m−bn
a−b and y =

an−m
a−b (as a and b have different parities we have

a− b 6= 0). If a− b = 1 then these solutions are integers. Thus we can not
guarantee the existence of noninteger numbers with desired properties.

O

A

B

K

L

Fig. 4

O7. (Juniors.) Let A and B be such points of
the circle with centre O that the triangle AOB
is right-angled. The perpendicular bisector of
the segment AO intersects the shorter arc AB in
point K. The lines KO and AB intersect in point
L. Prove that the triangle KBL is isosceles.
Solution. Since K lies on the perpendicular bi-

sector of the segment AO (Fig. 4) we have KA =
KO. On the other hand KO = AO since K and
A are points on the circle. Hence AKO is an
equilateral triangle from which we obtain that
∠AOK = 60◦. Hence ∠KOB = ∠AOB − ∠AOK = 90◦ − 60◦ = 30◦.
As also B lies on the same circle we have KO = BO, hence ∠BKO =
180◦−∠KOB

2 = 180◦−30◦
2 = 75◦. Finally from the equality AO = BO we ob-

tain ∠ABO = 180◦−∠AOB
2 = 90◦

2 = 45◦. Hence ∠BLK = ∠LOB+ ∠LBO =
30◦ + 45◦ = 75◦. The triangle KBL is isosceles as it has two equal angles.

O8. (Juniors.) There is a finite number of lamps in an electrical scheme.
Some pairs of lamps are directly connected by a wire. Every lamp is lit
either red or blue. With one switch all lamps that have a direct connection
with a lamp of the other colour change their colour (from red to blue or vice
versa). Prove that after some number of switches all lamps have the same
colour as two switches before that.
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Solution. If some connected lamps are lit in different colours they both
change colour upon switching, hence they are also lit differently after the
switch. The same holds on each following switch. Hence no pair of con-
nected lamps lit in different colours can disappear but more of such pairs
can appear. As there are only finitely many lamps, the number of connected
pairs of differently lit lamps can not grow infinitely. Hence this number
stops changing after some number of switches. This means at that point a
lamp either changes colour on each switch or never changes colour. Hence
the colours of all lamps are the same after two consecutive switches.

O9. (Seniors.) Define a1 = 1, and for each n > 1 let an = n · a⌊ n2 ⌋. Prove
that for each n > 12 we have an > n

2.
Solution 1. As an = n · a⌊ n2 ⌋, it suffices to show that for each n > 12 we

have a⌊ n2 ⌋ > n. By the inequalities n 6 2⌊ n2 ⌋ + 1 < 3⌊ n2 ⌋ this reduces to
proving that am > 3m for each m > 6. By am = m · a⌊ m2 ⌋ the latter reduces
to proving al > 3 for l > 3. This is true, since al = l · a⌊ l2 ⌋ > l.
Solution 2. By brute-force computing we obtain

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

an 1 2 3 8 10 18 21 64 72 100 110 216 234 294 315

n2 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225

Hence for 12 6 n < 16 the claim is true.
For bigger numbers note that for each k > 4 we have

a2k = 2
k · 2k−1 · . . . · 2 · 1 = 2k+(k−1)+...+1 = 2

k(k+1)
2 > 22(k+1).

By simple induction we conclude that an increases as n increases. For arbi-
trary n > 16 pick k > 4 such that 2k 6 n < 2k+1, giving

an > a2k > 2
2(k+1) = (2k+1)2 > n2.

O10. (Seniors.) Kati and Peeter play the following game. First, Kati writes
a positive integer a > 2016 on the blackboard. Then Peeter starts to write
more numbers on the blackboard, adding at each step the number 2016b+ 1
where b is the biggest number on the blackboard. Peeter wins if at some
point he writes a number divisible by 2017. Otherwise Kati wins. Can Kati
win, and if yes, what is the smallest number a she can write to win?
Answer: Yes, 2019.
Solution. The number 2016b+ 1 gives the same remainder upon division

by 2017 as −b + 1. Hence the remainders upon division by 2017 are as in
the sequence b, −b + 1, −(−b + 1) + 1, . . . Since −(−b + 1) + 1 = b, this
sequence has period 2, whence there are at most 2 different remainders.
Hence the number a gives the win to Kati if and only if neither a nor −a+ 1
is divisible by 2017. Thus a = 2017 does not give a win, as it is divisible
by 2017, similarly for a = 2018, as −2018+ 1 is divisible by 2017. But for
a = 2019 none of 2019 or −2019+ 1 is divisible by 2017, giving a win.
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O11. (Seniors.) Find all functions f : R → R that for all real numbers
x and y satisfy f (x+ y) f (xy) = f (x2 − y2 + 1).
Answer: f (x) = 0, f (x) = 1.
Solution. By substituting y = 0 into the identity we obtain for each x

that f (x) f (0) = f (1+ x2). By substituting x = 0 into the initial identity we
obtain for each y that f (y) f (0) = f (1− y2).
If f (0) = 0 then from the first equality we have f (t) = 0 for each real

number t > 1 (since for each t > 1 there exists x such that t = 1+ x2) and
from the second equality we have f (t) = 0 for each real number t 6 1 (since
for each t 6 1 there exists y such that t = 1− y2). As a conclusion, f (t) = 0
for each real number t. This function also satisfies the initial identity.

If f (0) 6= 0 then f (x) = f (1+x2)
f (0)

= f (−x) for each real number x, hence
f is an even function. By taking y = −x in the initial identity we obtain
f (0) f (−x2) = f (1), implying f (−x2) = f (1)

f (0)
. As each non-positive number

can be expressed as −x2 and f (x2) = f (−x2), we have f (t) = f (1)
f (0)
for each

real number t. By taking t = 1 we obtain f (0) = 1, whence f (t) = 1 for
each real number t.This function also satisfies the initial identity.

O12. (Seniors.) On the sides BC, CA and AB of triangle ABC, respectively,
points D, E and F are chosen. Prove that

1

2
(BC+ CA+ AB) < AD+ BE+ CF <

3

2
(BC+ CA+ AB) .

Solution 1. Without loss of generality let BC > CA > AB.
Let us first prove the second inequality. Consider the circle with centre

A that passes through the vertex C and consider the extension of the side
CB past the vertex B up to this circle (Fig. 5). As a chord lies inside the
circle, we have AD 6 AC. We also have BE 6 max(BC, BA) = BC and
CF 6 max(CA,CB) = CB. Since by the triangle inequality 12BC <

1
2CA+

1
2AB, we obtain AD + BE + CF 6 2BC + CA <

3
2BC + 3

2CA + 1
2AB <

3
2 (BC+ CA+ AB).
Let us now prove the first inequality. If the triangle is not acute then

BE > BA and CF > CA (Fig. 6). Since by the triangle inequality we have
1
2BC <

1
2CA+ 1

2AB, we obtain AD+ BE+ CF > AD+ BA+ CA > BA+

A

B

CD

E

F

Fig. 5

A

B C
D

E

F

Fig. 6

A

BC D

E

F

H

K

L

M

Fig. 7
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CA >
1
2 (BC+ CA+ AB). For an acute triangle we have AD > AK, BE >

BL and CF > CM, where AK, BL and CM are the altitudes of the triangle
ABC. Let H be the intersection point of the altitudes of the triangle ABC
(Fig. 7). We obtain AD+ BE+ CF > AK+ BL+ CM > AH + BH+ CH =
1
2 (BH+ CH) + 1

2 (CH+ AH) + 1
2 (AH + BH) > 1

2 (BC+ CA+ AB), where
the last inequality follows from the triangle inequality.
Solution 2. By the triangle inequality, AB 6 BD+ AD and AB 6 AE+

BE, analogous inequalities hold for sides BC and CA. As not all equal-
ity cases can hold simultaneously, adding these inequalities gives a strict
inequality 2(BC+ CA+ AB) < BC+ CA+ AB+ 2(AD+ BE+ CF). Col-
lecting similar terms and dividing by 2 gives the first required inequality.
Similarly by the triangle inequality, AD 6 AB + BD and AD 6 CA+

CD; analogously for BE and CF. Again, not all equality cases can hold
simultaneously, whence adding these inequalities gives a strict inequality
2(AD+ BE+ CF) < 2(BC+ CA+ AB) + BC+ CA+ AB. Collecting simi-
lar terms and dividing by 2 leads to the second required inequality.

O13. (Seniors.) Find all positive integers n for which all positive divisors of
n, taken without repetitions, can be placed into a rectangular table in such a
way that each cell contains exactly one divisor, all row sums are equal and
all column sums are equal.
Answer: 1.
Solution 1. Suppose that all positive divisors of n can be arranged as a

rectangular table of size k× l. Assume w.l.o.g. that k 6 l (k is the number
of rows). Let the sum of the numbers in each column be s; as n occurs
somewhere in the table, we must have s > n, whereby equality can hold
only if k = 1. For every j = 1, 2, . . . , l, let dj be the largest number in the
jth column; w.l.o.g., d1 > d2 > . . . > dl. As the divisors of n are among
n, n2 ,

n
3 , . . . , this chain of inequalities implies dl 6

n
l . Since the average

number in any column cannot exceed the maximum value of that column,
we also have dl >

s
k > n

k . These inequalities together imply
n
k 6 dl 6

n
l .

Hence k > l. As we assumed k 6 l, we conclude that k = l. Therefore all
these inequalities must actually be equalities. In particular s = n, implying
k = l = 1. Consequently, n has only one divisor, i.e., n = 1.
Solution 2. Obviously, n = 1 obviously meets the conditions. Suppose

that we have a required arrangement of all divisors of n for some n > 1.
If n is a power of 2 then all divisors except 1 are even. As all numbers

greater than 1 have more than one divisor, there must be at least 2 columns
(w.l.o.g.) in the table. However, one column sum is odd while all other
column sums are even, which contradicts the conditions of the problem.
Assume now that n has at least one odd prime divisor; let n = pα1

1 . . . p
αs
s ,

where s > 1, p1 < . . . < ps are primes and α1, . . . , αs are positive integers.
Denote the number of all positive divisors of n and the sum of all positive
divisors of n by δ(n) and σ(n), respectively. As n occurs in the table, the row
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sums and column sums must be at least n. Since there are at least
√

δ(n)

rows or columns, we must have σ(n) > n
√

δ(n). Denoting f (n) = σ(n)

n
√

δ(n)
,

we can write f (n) > 1. The definition implies that f is (weakly) multiplica-
tive, i.e., f (n) = f (pα1

1 ) . . . f (p
αs
s ). Furthermore, note the following two

monotonicity properties:

(*) For any primes p, q, if p < q then f (p) > f (q);

(**) For arbitrary prime number p and positive integer k, f (pk) > f (pk+1).

For proving (*), we can write

f (q)

f (p)
=
1+ q

q
√
2
· p

√
2

1+ p
=
1+ 1

q

1+ 1
p

<

1+ 1
p

1+ 1
p

= 1.

For proving (**), we analogously get

f (pk+1)

f (pk)
=
1+ p+ . . .+ pk+1

pk+1
√
k+ 2

· pk
√
k+ 1

1+ p+ . . .+ pk
=
1+ 1

p(1+p+...+pk)
√

1+ 1
k+1

6
1+ 1

p+pk+1
√

1+ 1
k+1

6
1+ 1

2+2k+1
√

1+ 1
k+1

=

√

√

√

√

(

1+ 1
2+2k+1

)2

1+ 1
k+1

=

√

√

√

√

1+ 1
1+2k

+ 1
(2+2k+1)2

1+ 1
k+1

.

As (2+ 2k+1)2 = 4+ 2k+3 + 22k+2 > 2k + 22k = 2k(1+ 2k), we have

1+
1

1+ 2k
+

1

(2+ 2k+1)2
< 1+

1

1+ 2k
+

1

2k(1+ 2k)
= 1+

1

2k
.

Consequently,

f (pk+1)

f (pk)
<

√

√

√

√

1+ 1
2k

1+ 1
k+1

6

√

√

√

√

1+ 1
k+1

1+ 1
k+1

= 1,

because 2k > k+ 1 for every k > 1.

Note that f (2) · f (3) = 3
2
√
2
· 4
3
√
2
= 1. Thus, by (*), f (2) > 1 > f (3).

Now, by (**), f (n) = f (pα1
1 ) · . . . · f (p

αs
s ) 6 f (p1) · . . . · f (ps). W.l.o.g., as-

sume that p1 = 2 (and s > 2), since otherwise, we could insert f (2) into
the product. Hence, by (*) and f (3) < 1, f (n) 6 f (2) · f (p2) · . . . · f (ps) 6
f (2) · f (3)s−1 6 f (2) · f (3) = 1. Consequently, the required arrangement is
possible only if all inequalities used in proving f (n) 6 1 are equalities, i.e.,
α1 = . . . = αs = 1, p1 = 2, p2 = 3 and s = 2. Thus n = 6. Number 6 has
4 positive divisors. So the smaller dimension of the table is at most 2; but
using only two proper divisors of 6 it is impossible to obtain 6 as the sum.
Hence a required arrangement of numbers n > 1 is impossible.
Remark. This problem, proposed by Estonia, appeared in the IMO 2016

shortlist as N2.
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O14. (Seniors.) All numbers 1 through 13 are written in
the circles of the snowflake in such a way that the sum of
the five numbers on each line and the sum of the middle
seven numbers are all equal. Find this sum if it is known
that it is the smallest possible.

1 2

34

5

6 10

11

89

12

13 7

Fig. 8

Answer: 31.
Solution. Let the sum of each ray be s and let the sum

in the middle circle be a. Then

3s = (1+ 2+ . . .+ 13) + 2a = 91+ 2a,

whence s = 91+2a
3 > 93

3 = 31. Figure 8 shows that s = 31
is possible.

O15. (Seniors.) Masha has an electric carousel in her garden that she rides
every day. As she likes order, she always leaves the carousel in the same
position after each ride. But every night three bears sneak into the garden

and start turning the carousel. Bear dad turns the carousel each time by 17
of the full circle. Bear mum turns the carousel each time by 19 of the full

circle. Bear cub turns the carousel each time by 132 of the full circle. Every
bear can turn the carousel as many times as he or she wants. In how many
different positions may Masha find the carousel in the morning?
Answer: 2016.
Solution 1. As 7 · 9 · 32 = 2016, all turns are integral multiples of 1

2016
of the full turn. Thus the carousel can be in at most 2016 distinct positions.
It remains to show that all these positions are possible. For that, we show

that the bears can turn the carousel by exactly 1
2016 of the full turn. Then the

same sequence of operations can be repeated to obtain also 2
2016 ,

3
2016 , . . . ,

2016
2016 of the full turn. Exactly

1
2016 of the full turn is obtained, for instance, if

bear dad turns the carousel once in one direction and both bear mum and
bear cub turn the carousel once in the opposite direction since 17 − 1

9 − 1
32 =

288−224−63
2016 = 1

2016 .

Solution 2. The carousel turns by an integral multiple of 17 of the full

turn due to bear dad, an integral multiple of 19 of the full turn due to bear

mum and an integral multiple of 132 of the full turn due to bear cub. As

the result, the carousel turns by x7 +
y
9 +

z
32 of the full turn where x, y, z are

some integers. As x7 +
y
9 +

z
32 = 288x+224y+63z

2016 , the carousel can be turned

only by integral multiples of 1
2016 of the full turn. As gcd(288, 224, 63) =

gcd(9 · 32, 7 · 32, 7 · 9) = 1, there exist integral coefficients a, b and c such
that a · 288+ b · 224+ c · 63 = 1. Hence taking x = na, y = nb and z = nc
for any integer n, the carousel turns by exactly n

2016 of the full turn. Hence

all integral multiples of 1
2016 of the full turn are possible, i.e., the carousel

can be left in 2016 distinct positions.

10



O16. (Seniors.) Solve the system of equation 3x + 7y + 14z = 252,
xyz− u2 = 2016 for non-negative real numbers.
Answer: x = 28, y = 12, z = 6, u = 0.
Solution 1. From the conditions of the problem we obtain

252 = 3x+ 7y+ 14z > 3 3
√

3x · 7y · 14z = 3 3
√

3 · 7 · 14 · (2016+ u2)

> 3
3
√
3 · 7 · 14 · 2016 = 3 3

√
26 · 33 · 73 = 22 · 32 · 7 = 252.

To not get a contradiction, wemust have equality in both inequalities, hence
3x = 7y = 14z and u = 0. From the first equation of the system we finally
obtain 3x = 7y = 14z = 252

3 = 84, hence x = 28, y = 12 and z = 6.
Solution 2. The second equation implies xyz > 2016. Substituting the

value of x from the first equation here gives (252− 7y − 14z)yz > 6048,
which is equivalent to (36 − y − 2z)yz > 864. We find the maximum of
function f (y, z) = (36 − y − 2z)yz. Fixing z > 0 arbitrarily, we obtain
d f (y,z)
dy = 36z − 2yz − 2z2 = 2z(18− y − z). The partial derivative with
respect to y is zero, if z = 18− y. As the second derivative is negative,
the function f (y, z) has exactly one maximum at y = 18− z for any fixed
positive number z. Define g(z) = f (18− z, z) = (18− z)2z. Its derivative
g′(z) = (18− z)(18− 3z) is zero at z = 6 (z = 18 does not count since then
y = 0). As the second derivative is negative at z = 6, the extremum found
is a maximum again. This means that out of all partial maxima of f (y, z),
the one for z = 6 is the largest. As g(6) = f (12, 6) = 864, the initial system
of equations can be satisfied only if y = 12 and z = 6. Substituting these
values into the initial system leads to 3x = 84, 72x− u2 = 2016. The only
solution of this system is (x, u) = (28, 0).

O17. (Seniors.) The bisector of the exterior angle at vertex C of the trian-
gle ABC intersects the bisector of the interior angle at vertex B in point K.
Consider the diameter of the circumcircle of the triangle BCK whose one
endpoint is K. Prove that A lies on this diameter.

A

B

C

K

O

B
′

C
′

Fig. 9

A B

C

K

O

B
′

C
′

Fig. 10
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B
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L

Fig. 11

A

B

C

K

O

M

Fig. 12

Solution 1. Let B′ and C′ be respectively the second intersection points of
the lines AB and AC with the circumcircle of the triangle BCK (Fig. 9). No-

tice that∠BKC = 180◦−∠CBK−∠BCK = 180◦− ∠ABC
2 − (90◦+ ∠ACB

2 ) =

90◦ − ∠ABC
2 − ∠ACB

2 . Hence the central angle supported by the arc BC has
the size 180◦ − ∠ABC − ∠ACB. The central angle supported by the arc
B′C has the size 2∠ABC and the central angle supported by the arc C′B
has the size 2∠ACB. Hence the central angle supported by the arc B′C′ has
the size 360◦− (180◦ −∠ABC−∠ACB)− 2∠ABC− 2∠ACB, which equals
180◦ −∠ABC−∠ACB. Hence the arcs BC and B′C′ have the same size. As
K is the midpoint of the arc B′C, the point B′ is the reflection of the point
C by the diameter drawn from point K, and C′ is the reflection of point B.
Hence the intersection point A of BB′ and CC′ has to lie on the diameter
drawn from the point K.
Remark. Among the used central angles there may also be angles of size

greater than 180◦ (reflex angles), such as the angle corresponding to the arc
B′C in Fig. 10.
Solution 2. Let L be the second endpoint of the diameter through K of

the circumcircle of the triangle BCK (Fig. 11). Then ∠KCL = 90◦, thus CL
is the bisector of the interior angle at vertex C of the triangle ABC, and
∠KBL = 90◦, so BL is the bisector of the exterior angle at vertex B of ABC.
The bisectors of the exterior angles at some two vertices of a triangle and

the bisector of the interior angle at the third vertex of the triangle intersect
at a common point. Thus the bisector of the exterior angle at vertex A of the
triangle ABC passes through points K and L. Thus point A lies on KL.
Solution 3. Let us denote the angles of the triangle ABC at vertices A, B

and C respectively α, β and γ. Let the intersection point of the line BC and
the tangent to the circumcircle of triangle BCK at point K be M (Fig. 12). By

the property of inscribed angles,∠MKC = ∠MBK =
β
2 . The bisectors of the

exterior angles at some two vertices of a triangle and the bisector of the in-
terior angle at the third vertex of the triangle have a common point. Hence
AK is the bisector of the exterior angle at vertex A of the triangle ABC.

12



Thus ∠CKA = 180◦ −∠KAC−∠KCA = 180◦ − 180◦−α
2 − 180◦−γ

2 = α
2 +

γ
2 .

Hence ∠MKA = ∠MKC + ∠CKA = α
2 +

β
2 +

γ
2 = 90◦. As a tangent of

a circle is perpendicular to the diameter drawn from the point of tangency
we have that A lies on the diameter drawn from point K.

O18. (Seniors.) Let n and m be positive integers. What is the biggest num-
ber of points that can be marked in the vertices of the squares of the n×m
grid in such a way that no three of the marked points lie in the vertices of
any right-angled triangle?
Answer: n+m.
Solution. All vertices of squares lie on n+ 1 horizontal andm+ 1 vertical

lines. Suppose that at least n+m+ 1 points aremarked in the grid. Because
m > 0, the number of marked points is greater than n + 1. Hence by the
pigeonhole principle, at least one horizontal line contains more than one
marked point. Hence at most nmarked points are alone on their horizontal
lines. Similarly, at most m marked points are alone on their vertical lines.
Thus there exists a marked point that lies neither alone on its horizontal line
nor alone on its vertical line. But then there is a right-angled triangle with
vertices at marked points. So at most n+m points can bemarked according
to the conditions of the problem.

Fig. 13

By marking all vertices of squares of the grid
that lie at the left and lower edge of the grid ex-
cept for the lower left corner we havemarked ex-
actly n+m points (Fig. 13 depicts the choice for
a 5× 7 grid). Any three of the marked points ei-
ther lie on a common line or are the vertices of an
obtuse triangle, so the construction satisfies the
conditions of the problem.

Selected Problems from the Final Round

of National Olympiad

F1. (Grade 9.) Do there exist distinct positive integers x and y such that the
number x+ y is divisible by 2016, the number x− y is divisible by 2017 and
the number xy is divisible by 2018?
Answer: Yes.
Solution. For example, numbers x = 2016 · 2015− 2018 and y = 2018

meet the conditions. As 2016 · 2015 > 4 · 1009 = 2 · 2018 implies x > y,
they are distinct. The sum 2016 · 2015 is divisible by 2016 and the product is
obviously divisible by 2018. Furthermore, x − y = 2016 · 2015− 2 · 2018 =
(2017− 1)(2017− 2)− 2 · (2017+ 1) = 20172− 3 · 2017+ 2− 2 · 2017− 2 =
2017 · 2012, whence the difference of these numbers is divisible by 2017.

13



Remark. This choice of the numbers is not the only possible. One can
prove that all suitable numbers are of the form x = 2016k− 2018m and
y = 2018m, where k and m are integers such that k + 2m is divisible by
2017. Indeed, as 2018 = 2 · 1009 and 1009 is prime, one of x and y must
be divisible by 1009. Also one of x and y must be even, but as x + y is
divisible by the even number 2016, both must be even. Consequently, one
of these numbers must be divisible by 2018. Let w.l.o.g. y = 2018m. As
x+ y = 2016k, we must have x = 2016k− 2018m. Then x− y = 2016k− 2 ·
2018m = 2017(k− 2m)− (k+ 2m), whence x− y is divisible by 2017 if and
only if k + 2m is divisible by 2017. The pair in the solution is obtained by
taking k = 2015 and m = 1.

F2. (Grade 9.) Find all solutions of the equation a+ b+ c = 61 in natural
numbers that satisfy gcd(a, b) = 2, gcd(b, c) = 3, and gcd(c, a) = 5.
Answer: a = 10, b = 6, c = 45; a = 10, b = 36, c = 15; a = 40, b = 6,

c = 15.
Solution. As gcd(a, b) = 2, gcd(b, c) = 3 and gcd(c, a) = 5, the number

a is divisible by both 2 and 5, the number b is divisible by both 2 and 3,
and the number c is divisible by both 3 and 5. Hence a is divisible by 10,
b is divisible by 6 and c is divisible by 15. As 61 gives remainder 1 when
divided by each of 2, 3 and 5, the numbers a, b and cmust give remainder 1
when divided by 3, 5 and 2, respectively. Since a, b, c 6 61, the possibilities
are a = 10 or a = 40, b = 6 or b = 36, and c = 15 or c = 45. The sum
61 appears in three cases: a = 10, b = 6, c = 45; a = 10, b = 36, c = 15;
a = 40, b = 6, c = 15. A straightforward check shows that the conditions
gcd(a, b) = 2, gcd(b, c) = 3 and gcd(c, a) = 5 are also met in all these cases.

F3. (Grade 9.) Find all positive integers n such that a square can be cut into
n square pieces.
Answer: 1, 4 and all natural numbers starting from 6.

Fig. 14

Solution. A partition of a square into 1 square is triv-
ial. If n > 2 then a partition into 2n squares can be ob-

tained by cutting n squares of side length 1n from one side
of the square and n − 1 more squares of the same size
from a neighbouring side. One square of side length n−1n
of the side length of the big square is left (Fig. 14 depicts
the situation in the case n = 4 that provides a partition into 8 squares). For
each n > 2, one can obtain a partition into 2n+ 3 squares by splitting one
square in a partition into 2n squares into four. Thus there exist partitions
into 1, 4 and every natural number starting from 6.
It remains to show that there are no partitions of a square into 2, 3 and

5 squares. A square has 4 vertices and each vertex belongs to only one
square in a partition. If two vertices belonged to the same square in the
partition, this piece should be as large as the initial square, which is possi-
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x

y

A

BC

D

Fig. 15

ble only in partition into 1. Hence the number of
squares in a partition into a larger number of squares
must be at least 4. In a hypothetical partition into
5 squares, at least three sides of the initial square
should adjoin exactly 2 squares in the partition. Let
the initial square be ABCD and let the sides DA, AB
and BC adjoin exactly 2 squares in the partition. Let
the squares adjoining the side AB have side lengths
x and y in the order from vertex A to vertex B. The
square of side length x is adjoining also the side AD

and the square of side length y is adjoining the side BC, whence the other
squares adjoining the sides AD and BC have side lengths y and x, respec-
tively. If x > y then the squares located by vertices A and C would overlap
(Fig. 15). If x < y then the squares located by vertices B and D would over-
lap. If x = y, four squares in the partition would cover the whole initial
square and the fifth square cannot exist.

α

A B

C

D

Fig. 16

F4. (Grade 9.) Triangle ABC has AC = BC. The bisector
of angle CABmeets side BC at point D. The difference of
the sizes of some two internal angles of triangle ABD is
40◦. Find all possibilities of what the size of angle ACB
can be.
Answer: 68◦, 40◦, 20◦ and 4◦.
Solution. Denote ∠BAC = ∠ABC = α, then ∠ACB =

180◦ − 2α (Fig. 16). The sizes of the internal angles of
triangle ABD are ∠BAD = α

2 , ∠DBA = α and ∠ADB =

180◦ − 3
2α. Consider all cases of which two angles can

have 40◦ as the difference of sizes.

• If α − α
2 = 40

◦ then α = 80◦, whence ∠ACB = 20◦.
• The case α

2 − α = 40◦ is impossible since it would imply α < 0◦.

• If
(

180◦ − 3
2α

)

− α
2 = 40

◦ then α = 70◦, whence ∠ACB = 40◦.

• If α
2 −

(

180◦ − 3
2α

)

= 40◦ then α = 110◦, but the base angle of an
isosceles triangle cannot be obtuse.

• If
(

180◦ − 3
2α

)

− α = 40◦ then α = 56◦, whence ∠ACB = 68◦.

• If α −
(

180◦ − 3
2α

)

= 40◦ then α = 88◦, whence ∠ACB = 4◦.

F5. (Grade 10.) In the mathematics circle, Juku raised a hypothesis that, for
every integer n > 4, at least one out of the two largest integers that are less
than n2 is relatively prime to n. Is Juku’s hypothesis valid?
Answer: Yes.
Solution. If n is odd then the largest integer that is less than n2 is

n−1
2 . Let

d be a common divisor of numbers n−12 and n. Then d is a common divisor
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of numbers n− 1 and n, implying that d = 1. Hence n−12 and n are relatively
prime, meaning that the hypothesis holds in the case of odd numbers.
If n is even then the two largest integers that are less than n2 are

n
2 − 1

and n2 − 2. Let d1 be a common divisor of numbers n2 − 1 and n, and let d2
be a common divisor of numbers n2 − 2 and n. Then d1 is a common divisor
of numbers n− 2 and n, and d2 is a common divisor of numbers n− 4 and
n. Hence d1 divides 2, i.e., is either 1 or 2, and d2 divides 4, i.e., is either 1
or 2 or 4. If d1 and d2 were both larger than 1, they both should be even,
whence their multiples n2 − 1 and n2 − 2 should be even. This is impossible,
since n2 − 1 and n2 − 2 are consecutive integers. The contradiction shows
that at least one of the divisors d1 and d2 equals 1. Thus one of

n
2 − 1 and

n
2 − 2 is relatively prime to n, meaning that the hypothesis holds in the case
of even numbers, too.
Remark. The solution does not use the assumption n > 4. The purpose

of this assumption is to exclude cases that would require dealing with ques-
tions concerning the greatest common divisor of n and zero or a negative
number.

F6. (Grade 10.) Around each vertex of a regular hexagon of side length√
3 in a plane, one draws a circle of radius 1 with centre at that vertex and
paints the region inside the circle blue. Find the area of the part of the plane
that is painted blue.

Answer: 4π + 3
√
3.

Solution. The circles drawn around two neighbouring vertices of the

hexagon intersect, since 2 · 1 >

√
3. Hence every two neighbouring cir-

cles have a common region of the shape of a lens. Since a regular hexagon
can be put together from six equilateral triangles, the circumradius of the

Fig. 17

hexagon equals
√
3. The altitude of one equilateral tri-

angle is

√

(
√
3)2 − (

√
3
2 )2 = 3

2 . The distance between
a vertex and the second one counting from that vertex
along the circumference is 3, since it equals twice the al-
titude of the equilateral triangle (Fig. 17). As 2 · 1 < 3,
circles drawn around such two vertices do not intersect.
Thus the circles drawn around opposite vertices do not
intersect either.

AB
C

D

Fig. 18

The sum of the areas of all six blue circles is
6π. One must discount the area of six lenses.
Let A and B be neighbouring vertices of the
hexagon and let C and D be the points of in-
tersection of the circles drawn around A and B
(Fig. 18). Subtracting the area of triangle ACD
from the area of sector ACD gives precisely one

half of the area of a lens. We have
(

CD
2

)2
+
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(

AB
2

)2
= AC2, i.e.,

(

CD
2

)2
+

(

√
3
2

)2
= 12, whence CD = 1, implying that

the triangle ACD is equilateral. Thus the area of sector ACD and triangle

ACD equal 16π and
√
3
4 , respectively. The area of the region painted blue is

6π − 12
(

1
6π −

√
3
4

)

, which equals 4π + 3
√
3.

F7. (Grade 10.) Find the number of solutions of the equation |a − b| =
|b− c| in integers from 0 to 36.
Answer: 2017.
Solution. The equation |a− b| = |b − c| is satisfied if and only if either

a− b = b− c or a− b = c− b. The first equality is equivalent to a+ c = 2b,
the second is equivalent to a = c.
To fulfill the condition a+ c = 2b, the numbers a and c must have the

same parity. Then their sum is even and b lies between a and c, whence it
also falls between the required bounds. There are 19 possibilities for choos-
ing a or c as an even number (0, 2, . . . , 36 are suitable) which gives 361
possibilities in total. The number of possibilities to choose an odd num-
ber a or c is 18 (1, 3, . . . , 35 are suitable) which gives 324 possibilities in
total. There are therefore 685 triples satisfying a + c = 2b. The number
of triples satisfying a = c is 1369, since a and b can be chosen arbitrarily.
There are 37 solutions that satisfy both a + c = 2b and a = c and hence
being counted twice, since these two conditions hold simultaneously if and
only if a = b = c. Consequently, the total number of solutions meeting the
conditions of the problem is 685+ 1369− 37 which equals 2017.

F8. (Grade 10.) a) The general form ABC of a three-digit number is initially
written on a blackboard. Ann and Enn replace by turns letters with digits,
exactly one at a time, with Ann starting. Can Annwrite digits in such a way
that, irrespectively of Enn’s move, the resulting three-digit number would
be divisible by 11? (Different letters may be replaced with equal digits but
the letter A must not be replaced with zero.)
b) Ann and Enn got bored with writing the general form of the number

again at the beginning of each game, and decided to change the rules as
follows. First, Ann writes one digit to the blackboard, then Enn writes the
second digit either to the right or to the left of it, and finally Ann completes
the number with writing the third digit either to the left or to the right of
the two digits already on the blackboard (writing between the digits is not
allowed). Can Ann write digits in such a way that, irrespectively of Enn’s
move, the result would be a three-digit number (i.e., not starting with 0)
that is divisible by 11?
Answer: a) No; b) Yes.
Solution. a) Let Ann replace on her first move one of letters B or C with

a digit k. If Enn now replaces the other one of B and C with digit k, too, the

resulting number Akk is divisible by 11 if and only if A00 is divisible by 11,
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which in turn is the case if A is divisible by 11. The only such digit is 0 but
A cannot be replaced with 0. If Ann replaces on her first move the letter
A with a non-zero digit k then Enn can replace B with the digit k− 1. The
number resulting from Ann’s second move differs from the number kk0 by
less than 11, whence it cannot be divisible by 11.
b) Let Annwrite 9 on her first move. If Enn nowwrites before or after it a

digit k and Ann writes after or before of it, respectively, the digit 9− k, then
the resulting number is divisible by 11. Ann cannot make her last move in
such a way only if Enn on his move has written either 9 to the end of the
number or 0 to the beginning of the number. If Enn has written 9 to the end
of the number, the blackboard contains digits 99 and Ann can construct a
multiple of 11 by writing 0 to the end. If Enn has written 0 to the beginning
of the number, Ann can write 2 to the very beginning which results in 209,
again a multiple of 11.
Remark. Similarly to the proof presented here, one can show that Ann

can win after writing any digit n > 2 on her first move.

F9. (Grade 11.) Find the least positive integer n for which there exists a
positive integer a such that both a and a+ 735 have exactly n positive divi-
sors.
Answer: 4.
Solution. If numbers a and a+ 735 had exactly 2 divisors, they would be

primes. These numbers are of different parity, whence one of them is even.
But if a = 2 then a+ 735 = 737 = 11 · 67.
If numbers a and a+ 735 had exactly 3 divisors, each of them would be

a square of a prime. Similarly to the previous case, we get a = 4. But then
a+ 735 = 739, and 739 is not a perfect square.
On the other hand, numbers 10 and 10+ 735 have exactly 4 divisors.
Remark. The case of 3 divisors can be handled also as follows. If numbers

a and a+ 735 had exactly 3 divisors, they would be squares of primes, im-
plying 735 = p2− q2 = (p− q)(p+ q) for some primes p and q. As 735 ≡ 3
(mod 4), one of the factors p− q and p+ q must be congruent to 3 and the
other one congruent to 1 modulo 4. But then their sum 2p is divisible by 4,
whence p is even and cannot be the larger among two primes.

F10. (Grade 11.) Find all quadruples (a, b, c, d) of integers satisfying the
system of equations −a2 + b2 + c2 + d2 = 1, 3a+ b+ c+ d = 1.
Answer: (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0,−1,−1), (1,−1, 0,−1), and

(1,−1,−1, 0).
Solution 1. Note that −a2 + b2 + c2 + d2 = −2a(2a+ b+ c + d) + (a+

b)2 + (a+ c)2+ (a+ d)2. By the second equation, 2a+ b+ c+ d = 1− a, so
the first equation reduces to 2a(a− 1) + (a+ b)2 + (a+ c)2 + (a+ d)2 = 1.
If a > 1 or a < 0 then 2a(a− 1) is a positive even number, whence the l.h.s.
of the last equation is greater than 1. If a = 0 then according to the first
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equation exactly one number among b2, c2 and d2 is equal to 1, others are
zero. Value −1 together with zeros would not satisfy the second equality,
thus one of b, c and dmust be 1, while others are zero. If a = 1 then accord-
ing to the first equation exactly two numbers among b2, c2 and d2 are equal
to 1 and the remaining number is zero. The second equation is satisfied
only if both non-zero variables take the value −1.
Solution 2. The given system of equations is equivalent to

{

a2 = b2 + c2 + d2 − 1,
3a = 1− b− c− d.

Squaring the second equation and subtracting the first equation multiplied
by 9, we get 8b2 + 8c2 + 8d2 − 10 + 2b + 2c + 2d − 2bc − 2bd − 2cd = 0,
which is equivalent to 5b2 + 5c2 + 5d2 + (b + 1)2 + (c + 1)2 + (d + 1)2 +
(b− c)2+ (b− d)2+ (c− d)2 = 13. In the l.h.s., the values of all monomials
are non-negative integers. Thus at least one number among b, c, d must be
zero, otherwise the first three monomials would sum up to more than the
r.h.s. W.l.o.g., assume b = 0, the last equation then reduces to

6c2 + 6d2 + (c+ 1)2 + (d+ 1)2 + (c− d)2 = 12.
Obviously |c| 6 1, |d| 6 1, otherwise either of the first two monomials
alone would be larger than the r.h.s. If |c| = |d| = 1, the last equation can
hold only if c+ 1 = d+ 1 = c − d = 0, whence c = d = −1. Substituting
b = 0 and c = d = −1 into the second equation of the initial system, we
obtain a = 1. If, for example, c = 0, then the last equation reduces to
7d2 + (d + 1)2 = 11, whence d = 1 is the only possibility. Substituting
b = c = 0 and d = 1 to the second equation, we obtain a = 0.
Tuples a = 1, b = 0, c = d = −1 and a = 0, b = c = 0, d = 1 together

with those obtained by arbitrarily permuting the values of b, c, d satisfy also
the first equation of the initial system.
Solution 3. If a = 0 then the first equation of the system reduces to

b2 + c2 + d2 = 1, which can hold in integers only if two numbers among
b, c, d are zeros. If, w.l.o.g., b = c = 0, then the second equation of the
system gives d = 1. Assume in the following that a 6= 0. The first equa-
tion of the system is equivalent to b2 + c2 + d2 = 1 + a2, which implies
b2 6 1 + a2 < (1 + |a|)2. Hence |b| < 1 + |a| which implies |b| 6 |a|.
Analogously we get also |c| 6 |a| and |d| 6 |a|. Thus |3a| = 3|a| >

|b| + |c| + |d|. The second equation of the system, however, gives 1 =
3a + b + c + d = |3a+ b+ c+ d| > |3a| − (|b|+ |c|+ |d|). Hence either
|3a| − (|b|+ |c|+ |d|) = 0 or |3a| − (|b|+ |c|+ |d|) = 1. In the first case,
we get |a| = |b| = |c| = |d| which does not satisfy the initial system. In
the second case, assume w.l.o.g. that |a| = |b| = |c| and |d| = |a| − 1. Sub-
stituting |a| = |b| = |c| into the first equation of the initial system, we get
a2+ d2 = 1, whence |a| = 1 and d = 0. If a = 1, the second equation implies
b = c = −1. The case a = −1 does not give solutions.
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Remark. After obtaining the inequalities |b| 6 |a|, |c| 6 |a|, |d| 6 |a|
one can also argue as follows. If a < 0 then 3a+ b+ c + d = −3|a|+ b +
c+ d 6 −3|a|+ |b|+ |c|+ |d| 6 0, which contradicts the second equation.
Consequently a > 0. Thus a+ b = |a|+ b > |a| − |b| > 0 and, analogously,
a + c > 0 and a + d > 0. As the second equation of the initial system is
equivalent to (a + b) + (a + c) + (a + d) = 1, one number among a + b,
a+ c, a+ d must be 1, while others are zeros. If a+ b = 1 and c = d = −a
then the first equation reduces to a2 + b2 = 1, implying a = 1, b = 0,
c = d = −1. The other two solutions are obtained analogously.
Solution 4. We rewrite the given equations as b2 + c2 + d2 = 1 + a2,

b+ c+ d = 1− 3a. We now apply the AM-QM inequality to the numbers
|b|, |c| and |d| to obtain

√

1+ a2

3
=

√

b2 + c2 + d2

3
>

|b|+ |c|+ |d|
3

>
|b+ c+ d|
3

=
|1− 3a|
3

.

Thus 1+a
2

3 >
(1−3a)2
9 , whence 3+ 3a2 > 1− 6a+ 9a2, implying 6a2 − 6a−

2 6 0. Solving the quadratic inequality gives 3−
√
21
6 6 a 6 3+

√
21
6 , whence

a = 0 or a = 1. Now proceed as in Solution 1.

F11. (Grade 11.) Let ABC be a scalene triangle with median AM. Let K
be the point of tangency of the incircle of triangle ABC with the side BC.
Prove that if the length of the side BC is the arithmetic mean of the lengths
of the sides AB and AC then the bisector of the angle BAC passes through
the midpoint of the line segment KM.
Solution. Let N be the intersection point of the bisector of angle BAC and

side BC; it suffices to prove that KN = MN (Fig. 19). The bisector property

implies NCNB = AC
AB . Substituting NC = BC− NB gives

NB =
BC

1+ AC
AB

=
AB · BC
AB+ AC

.

As AB+ AC = 2BC by assumption, this implies NB = AB
2 .

A

B C
MN

K

Fig. 19

A

B C
MK

X

Y

N

Fig. 20
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On the other hand, let X and Y be the points of tangency of the incircle
of triangle ABC with sides AB and AC, respectively (Fig. 20). Then AX =
AY, BX = BK and CK = CY, whence BC = BK + CK = BX + CY =
AB− AX+ AC− AY = AB+ AC− 2AX = 2BC− 2AX. Thus BC = 2AX,
implying AX = BM. Consequently, KN = BN − BK = BN − BX = AB

2 −
(AB− AX) = AX − AB

2 = BM− AB
2 = BM− BN = MN.

F12. (Grade 11.) Call a tuple (a1, . . . , an) of real numbers stable if the sums
a1 + a2 + . . .+ ak, as well as the sums ak + ak+1 + . . . + an, where in both
cases 0 < k 6 n, are either all negative or all non-negative.
For instance, the tuple (3,−1, 2) is stable, since:

3 > 0,
3+ (−1) > 0,
3+ (−1) + 2 > 0;

2 > 0,
(−1) + 2 > 0,

3+ (−1) + 2 > 0.

Prove that in any stable tuple with at least 3 terms where all terms are al-
ternately negative and non-negative (it is unknown whether the first term
is negative or non-negative), there exist 3 consecutive terms that together
(without reordering) form a stable tuple on their own.
Solution. Consider terms whose absolute value is minimal in the tuple.

If there exists a negative such element, denote it ai, then the sum of ai and its
any neighbour is non-negative. Thus ai is neither the first nor the last in the
tuple because of stability of the tuple. But then both ai−1 + ai and ai + ai+1
are non-negative, as well as ai−1 + ai + ai+1, hence ai−1, ai, ai+1 together
form a stable subtuple. If all elements with minimal absolute value are
non-negative then let ai be any of them. Analogously to the previous case,
both ai−1+ ai and ai + ai+1 are negative, as well as ai−1+ ai + ai+1, whence
ai−1, ai, ai+1 together form a stable tuple.
Remark. Several less elegant approaches are possible. First, one can

prove by induction that if the claim didn’t hold then terms of the tuple (a1+
a2, a2 + a3, . . . , an−1 + an) would be alternately negative and non-negative,
whereby a1 + a2 would have the same sign as a1 and an−1 + an would have
the same sign as an. This would imply that the numbers of terms in tuples
(a1, a2, . . . , an) and (a1 + a2, a2 + a3, . . . , an−1 + an) would have the same
parity which is impossible.
Second, one can prove that |a1| > |a2| and |an−1| 6 |an|, whereby these

inequalities are strict in the case a1 < 0. Furthermore, one can prove that
a triple (x, y, z) is stable if and only if |x| > |y| and |z| > |y|, with strict
inequalities in the case x < 0. From these facts, one can prove that if the
claim doesn’t hold then |a1| > |a2| > |a3| > . . . > |an−1| > |an| if a1 < 0
and |a1| > |a2| > |a3| > . . . > |an−1| > |an| if a1 > 0. In both cases, we get
a contradiction with the magnitude relationship between an−1 and an.
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F13. (Grade 11.) Given positive integers a, b, c and d and

(a+ b)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d) = u,

ab+ ac+ ad+ bc+ bd+ cd = v,

prove that the product uv is divisible by 3.
Solution. If among numbers a, b, c, d there are two that give either re-

mainders 0 and 0 or remainders 1 and 2 modulo 3, the sum of these two
numbers is divisible by 3. Hence u, as well as uv, is divisible by 3. Now
study the case where at most one among the numbers a, b, c, d is divisible
by 3 and all numbers not divisible by 3 are congruent modulo 3. If exactly
one among numbers a, b, c, d is divisible by 3 then the products of this num-
ber with all other numbers are divisible by 3. Other numbers form 3 pairs
whose products of components are congruent modulo 3. Hence the sum v
of all six pairwise products is divisible by 3. If none of a, b, c, d is divisible
by 3 then the pairwise products are all congruent modulo 3. Again, as the
number of pairs is divisible by 3, this implies that the sum v of the products
is divisible by 3. Consequently, uv is divisible by 3 in this case, too.

F14. (Grade 12.) Positive integer b is obtained by reordering the digits in a
positive integer a. Which of the following claims are definitely true?

a) The sums of the digits of numbers 2a and 2b are equal.

b) The sums of the digits of numbers 3a and 3b are equal.

c) The sums of the digits of numbers 5a and 5b are equal.

Answer: a) and c).
Solution. Call digits 0, 1, 2, 3, 4 small and digits 5, 6, 7, 8, 9 large. Denote

the digits of k-digit number n from right to left by (n)0, (n)1, . . . , (n)k−1.
Denote by Σ(n) the sum of all digits of n and by l(n) the number of large
digits of n.
a) If (a)i is small then (2a)i = 2(a)i or (2a)i = 2(a)i + 1 depending

on whether (a)i−1 is small or large. Similarly if (a)i is large then (2a)i =
2(a)i − 10 or (2a)i = 2(a)i − 9 depending on whether (a)i−1 is small or
large. In other words, when multiplying by 2, each large digit necessitates
decreasing of the digit at its place by 10 and increasing of the preceding
digit by 1 in comparison with a small digit. Hence, for every natural num-
ber n, Σ(2n) = 2Σ(n) − 9l(n). As Σ(a) = Σ(b) and l(a) = l(b), we have
Σ(2a) = Σ(2b).
b) If a = 34 and b = 43 then Σ(3a) = 1 + 0 + 2 = 3 but Σ(3b) =

1+ 2+ 9 = 12.
c) Obviously Σ(10a) = Σ(10b). By part a), on the other hand, Σ(10n) =

Σ(2 · 5n) = 2Σ(5n) − 9l(5n), holding for every natural number n. Hence
2Σ(5a)− 9l(5a) = 2Σ(5b)− 9l(5b). The digit (5n)i is large if and only if the
digit (n)i is odd, because a carry during multiplying by 5 can be at most
4. Thus l(5n) is the number of odd digits of n, implying l(5a) = l(5b).
Consequently, Σ(5a) = Σ(5b).

22



F15. (Grade 12.) Real numbers x, y and z satisfy x+ y+ z = 4 and 1x +
1
y +

1
z = 1

3 . Find the largest and the smallest possible value of the expression

x3 + y3 + z3 + xyz.
Answer: 64 is both the largest and the smallest.
Solution. Note that

(x+ y+ z)3 = x3 + y3 + z3 + 3(x2y+ xy2 + x2y+ xy2 + y2z+ yz2) + 6xyz,

while

3(x+ y+ z)
(1

x
+
1

y
+
1

z

)

xyz = 3(x+ y+ z)(xy+ xz+ yz)

= 3(x2y+ xy2 + x2z+ xz2 + y2z+ yz2) + 9xyz.

Thus

(x+ y+ z)3 − 3(x+ y+ z)
(1

x
+
1

y
+
1

z

)

xyz = x3 + y3 + z3 − 3xyz.

By assumptions, x + y + z = 4 and 1x +
1
y +

1
z = 1

3 . Hence 64− 4xyz =

x3 + y3 + z3 − 3xyz, implying x3 + y3 + z3 + xyz = 64. Consequently, the
expression x3 + y3 + z3 + xyz has only one value 64.
Remark. An example of numbers satisfying the conditions is x = 1,

y = 3−3
√
3

2 and z = 3+3
√
3

2 . Then 1x = 1,
1
y =

−1−
√
3

3 and 1z =
−1+

√
3

3 .

F16. (Grade 12.) Prove that in every triangle there is amedianwhose length

squared is at least
√
3 times the area of the triangle.

Solution 1. Assume w.l.o.g. that BC is the shortest side of the triangle.
Then the least angle of the triangle is by vertex A. Denote a = BC, b = CA,
c = AB, α = ∠BAC and let m be the length of the median drawn from
vertex A. By assumptions made at the beginning of the solution, α 6 60◦.
Let D, E, F be the midpoints of sides BC, CA, AB, respectively (Fig. 21).
As ∠AFD = 180◦ − α because of DF ‖ CA, the law of cosines in triangle
AFD implies m2 = ( b2 )

2 + ( c2 )
2 − 2 · b2 · c2 cos∠AFD = b2

4 + c2

4 + bc
2 cos α >

b2

4 + c2

4 + bc
2 cos 60

◦ = b2+c2+bc
4 . As b2 + c2 > 2bc, we obtain m2 > 3bc

4 .
On the other hand, let S be the area of the triangle ABC. Then S =

1
2bc sin α 6 1

2bc sin 60
◦ 6

√
3bc
4 . Before we obtained the inequality m

2 >

3bc
4 =

√
3 ·

√
3bc
4 . Consequently, m

2 >
√
3 S.

Solution 2. Let the median drawn from vertex A of the triangle ABC be
AD and the centroid of the triangle be M. W.l.o.g., let AD be the longest
median of triangle ABC; denote AD = m. Draw to both sides of the median
AD triangles ADX and ADY that have right angles by vertex D and angles
of size 30◦ by vertex A; then AXY is an equilateral triangle having median
AD and centroid M in common with triangle ABC (Fig. 22). We show next
that the area of triangle AXY is at least as large as the area of triangle ABC.
Since a median divides the triangle into two parts of equal area, it suffices

23



A

B

CD

E
F

M

Fig. 21
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Fig. 23

to show that the area of triangle ADX is at least as large as the area of
triangle ADB. If point B lies inside the triangle ADX or on its side then
this claim holds obviously. If point C lies inside the triangle ADY or on
its side then this claim holds by symmetry. It remains to handle the case
where both B and C lie outside the triangle AXY (Fig. 23). Suppose w.l.o.g.
that line segments DB and AX intersect (the other case where line segments
DC and AY intersect is symmetric). Let l be the line parallel to AX passing
through Y. As line l is symmetric w.r.t. point Dwith line AX and DC = DB,
line segment DC intersects line l. Therefore MC > MY = MA, which
contradicts the assumption that AD is the longest median of the triangle
ABC. Hence this case cannot appear. As XD = YD = m√

3
, the area of the

triangle AXY is m · m√
3
= m2√

3
. By the argumentation above, the area of the

triangle ABCmust be at most m
2√
3
.

Solution 3. Let the median of the triangle ABC drawn from point A be
AD and the centroid of the triangle be M. W.l.o.g., let AD be the longest
median of the triangle ABC; denote AD = m. Then A is the vertex of the
triangle with largest distance from point M. Thus vertices B and C lie in
circle cwith centre M and radius MA. Let B′ and C′ be the second intersec-
tion points of rays AB and AC, respectively, with circle c (Fig. 24); then the
area of the triangle AB′C′ is at least as large as the area of triangle ABC. Let
X and Y be points on circle c such that triangle AXY is equilateral (Fig. 25);
then the area of AXY is at least as large as the area of triangle AB′C′ and
also at least as large as the area of triangle ABC. The triangle AXY can be
divided into three equal triangles MAX, MXY and MYA whose total area

is 32 ·
(

2
3m

)2
sin 120◦, which equals m

2√
3
. Hence the area of the triangle ABC

is at most m
2√
3
.

Solution 4. LetM be the centroid of the triangle ABC andm be the length
of its longest median. The area of the triangle ABC is

S =
1

2
· (MB ·MC · sin α +MC ·MA · sin β +MA ·MB · sin γ) ,
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where α = ∠BMC, β = ∠CMA and γ = ∠AMB. As MA 6 2
3m, MB 6 2

3m

andMC 6 2
3m, we obtain S 6

1
2 · ( 23m)2 · (sin α + sin β + sin γ). As α, β and

γ are less than 180◦, Jensen’s inequality applies and gives

sin α + sin β + sinγ

3
6 sin

α + β + γ

3
= sin

360◦

3
= sin 120◦ =

√
3

2
.

Consequently, S 6 1
2 · 49m2 · 3 ·

√
3
2 = m2√

3
, directly implying the claim.

F17. (Grade 12.) Inside a circle of radius 1 (or on the circumference), one
marks n points in such a way that the minimal distance between two
marked points is as large as possible. Let dn be this distance between the
two closest points. Is it true that dn+1 < dn for every natural number n > 2?

α

O

Ai

Aj

Fig. 26

Answer: No.
Solution. We show that d6 6 1 6 d7. For the

first inequality, assume arbitrary six points A1,
A2, A3, A4, A5, A6 being marked in the circle.
Let the centre of the circle be O. If Ai = O for
some i, the distance between Ai and any other
marked points is at most 1. Assume in the rest
that Ai = O for no i. Let α be the smallest angle
that arises between some two raysOAi andOAj,
where i, j = 1, 2, 3, 4, 5, 6 (Fig. 26). Then α 6 60◦,
since the sum of angles between consecutive rays
is 360◦. If AiAj > 1 then AiAj is the largest side of the triangleOAiAj, as the
lengths of OAi and OAj do not exceed 1. The angle opposite to the longest
side is the largest, whence α should be larger than 60◦, contradiction. Thus
there exist two marked points at distance at most 1 from each other. As the
choice of the points was arbitrary, this establishes d6 6 1.
On the other hand, when marking the vertices of a regular hexagon in-

scribed into the circle together with the centre of the circle, the distance
between any two consecutive marked points on the circumference is equal
to 1 and their distance from the remaining point is also 1. Hence d7 > 1.
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Remark. The non-strict inequality dn+1 6 dn holds for every n. Indeed,
if there is a couple with distance at most a among arbitrary nmarked points
then there is such a couple among arbitrary n+ 1 marked points either.

F18. (Grade 12.) Find all positive integers k for which the integers 1, 2, . . . ,
2017 can be divided into k groups in such a way that the sums of numbers
in these groups are k consecutive terms of an arithmetic sequence.
Answer: 1, 2, 1009, 2017.
Solution. Let the arithmetic sequence have the first term a and the com-

mon difference d. The sum of all terms equals the sum of numbers 1, 2, . . . ,

2017, i.e.,
2a+(k−1)d

2 · k = 2017·2018
2 , whence (2a+(k− 1)d) · k = 2017 · 2018 =

2 · 1009 · 2017. Thus the product 2 · 1009 · 2017 is divisible by k. Since 2, 1009,
and 2017 are primes and k 6 2017 by assumption, the only possibilities are
k = 1, k = 2, k = 1009, and k = 2017.
All these can occur indeed. A partition into 1 group trivially satisfies the

conditions. An arbitrary partition into 2 groups also provides two consecu-
tive terms of some arithmetic sequence. Coupling each even number with
the next odd number, we get 1008 groups of size 2, whose sums are consec-
utive terms of the arithmetic sequence 5, 9, 13, . . . . Forming one additional
group containing 1 as the only element, we obtain a partition satisfying the
conditions. Finally, the conditions will also be met by the partition where
every integer 1, 2, . . . , 2017 belongs to a separate group.

IMO Team Selection Contest I

S1. Do there exist two positive powers of 5 such that the number obtained
by writing one after the other is also a power of 5?
Answer: No.
Solution. Suppose that 5x · 10n + 5y = 5z, where 5y has n digits. Then

5x+n · 2n = 5y · (5z−y − 1), whence 2n = 5z−y − 1. Case n = 1 does not
work. For case n = 2 we get z − y = 1. Since 5y has 2 digits, the only
possibility is y = 2 and z = 3, whence x = 0, which is not positive. Case
n > 2 yields 5z−y ≡ 1 (mod 8), thus z − y = 2k for an integer k. Now
2n = 25k − 1 = 24 · (25k−1+ . . .+ 1), this is impossible, since 3 | 24.

S2. Find the smallest real constant C such that for any positive real num-
bers a1, a2, a3, a4 and a5 (not necessarily distinct), one can always choose
distinct subscripts i, j, k and l such that

∣

∣

ai
aj
− ak
al

∣

∣ 6 C.

Solution. See IMO 2016 shortlist, problem A2.

S3. Let ABC be a triangle with AB = AC 6= BC and let I be its incenter.
The line BI meets AC at D, and the line through D perpendicular to AC
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meets AI at E. Prove that the reflection of I in AC lies on the circumcircle
of triangle BDE.
Solution. See IMO 2016 shortlist, problem G4.

S4. Let ABC be an isosceles triangle with apex A and altitude AD. On
AB, choose a point F distinct from B such that CF is tangent to the incircle of
ABD. Suppose that ∆BCF is isosceles. Show that those conditions uniquely
determine: a) which vertex of BCF is its apex; b) the size of ∠BAC.

A

B CD

F

K

L

Fig. 27

Solution. a) Consider cases of the location of
the vertex angle of the triangle BCF (Fig. 27).
If F were the apex, then F would lie on the

perpendicular bisector of the side BC, i.e., on
the line AD, whence F = A. Therefore AC
would be a tangent of the incircle of the trian-
gle ABD. But the lines AB and AD are tan-
gents of the same circle. There can be at most
two tangents drawn from one point to one cir-
cle. Hence this case is impossible.
Let B be the apex. As CBF is a base angle of

the isosceles triangle ABC, we have ∠CBF <

90◦. Hence ∠BCF > 45◦. Let K be the tan-
gent point of the line CF and the incircle of
the triangle ABD and let L be the projection of
the point K onto the line BC. By construction,
KL < 2r, where r is the radius of the incircle
of the triangle ABD. On the other hand, ∠LCK = ∠BCF > 45◦ implies
KL > CL > CD = BD > 2r. Hence this case is impossible, too.
This shows that the apex of triangle BCF can only be C.
b) Let the apex be C. Fix a point D, mutually perpendicular lines l1 and

l2 both passing through C, and circle c that is tangent to both lines; let the ra-
dius of the circle be r. Choose point A on l1 in such a way that DA > 2r and
the tangent point of line l1 and circle c lies on the line segment DA. Point B
is determined by the location of A as the point of intersection of line l2 and
the second tangent line of circle c passing through A, point C is symmetric
to B w.r.t. DA and F is defined as in the problem. When point A moves
away from D, points B and C get closer to D, whence ∠BAC decreases and
∠BCF increases. Thus these angles can equal only in one case.
Remark. By extending the argument given to part b) of the problem,

it can be shown that an isosceles triangle satisfying the conditions of the
problem exists. It suffices to note that ∠BAC can get infinitely close to zero,
while ∠BAC = 90◦ implies ∠BCF < ∠BCA = 45◦ < ∠BAC.
Calculations show that the size α of apex angle that fulfills the condi-

tions of the problem satisfies the equation tan3 α − 8 tan2 α + 17 tan α − 8 =
0 and its approximate value is α ≈ 33.3◦.
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S5. The leader of an IMO team chooses positive integers n and k with
n > k, and announces them to the deputy leader and a contestant. The
leader then secretly tells the deputy leader an n-digit binary string, and the
deputy leader writes down all n-digit binary strings which differ from the
leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111, and 100.)
The contestant, who is allowed to look at the strings written by the deputy
leader, tries to guess the leader’s string. What is the minimum number of
guesses (in terms of n and k) needed to guarantee the correct answer?
Solution. See IMO 2016 shortlist, problem C1.

S6. Let R
+ be the set of positive real numbers. Determine all functions

f : R
+ → R

+ satisfying the equation

x f (x2) f ( f (y)) + f (y f (x)) = f (xy)( f ( f (x2)) + f ( f (y2))).

for all x, y ∈ R
+.

Answer: f (x) = 1
x .

Solution. See IMO 2016 shortlist, problem A4. (That problem was pro-
posed by Estonia.)

IMO Team Selection Contest II

S7. Let n be a positive integer. In how many ways can an n× n table be
filled with integers from 0 to 5 such that

a) the sum of each row is divisible by 2 and the sum of each column is
divisible by 3;

b) the sum of each row is divisible by 2, the sum of each column is divis-
ible by 3 and the sum of each of the two diagonals is divisible by 6?

Answer: a) 6n
2−n; b) 1, if n = 1; 6, if n = 2; 6n

2−n−2, if n > 3.
a) Let’s fill the top left (n− 1)× (n− 1) subtable arbitrarily; this can be

done in 6(n−1)
2
ways. Now there are 3 ways to fill each of the top n − 1

cells of the rightmost column and 2 ways to fill each of the left n− 1 cells
of the bottom row to satisfy the requirements. The value for the last empty
cell in the bottom right is then uniquely determined (mod 2 by the bottom

row, and mod 3 by the rightmost column). In conclusion, there are 6(n−1)
2 ·

3n−1 · 2n−1 = 6n2−n ways to fill the table.
b) For n = 1, the only solution is writing 0 into the single cell. For

n = 2, let a be the top left number. The bottom right must then be (6−
a) mod 6. Using the conditions for rows and columns, for the top right
number x we get the equations x ≡ −a (mod 2) and x ≡ a (mod 3), and
for the bottom left number y, y ≡ a (mod 2) and y ≡ −a (mod 3). The
Chinese remainder theorem determines x and y uniquely, and we see from

28



the equations that their sum is also divisible by 6. Thus there are 6 ways to
fill the table in this case, one for each value of a.
Consider now n > 3. Fill the top left (n− 1) × (n − 1) subtable arbi-

trarily; this can be done in 6(n−1)
2
ways. The bottom right cell’s value is

uniquely determined by other values on the falling diagonal. Denote the
value in the top left cell by a, the sum of the 2nd to n − 1-st cells (inclu-
sive) in the top row by b, the sum of the 2nd to n− 1-st cells in the leftmost
column by c, and the sum of 2nd to n− 1-st cells on the rising diagonal by d.
Using the Chinese remainder theorem, fill the top right cell with the

unique value x such that x ≡ −a− b (mod 2) and x ≡ a+ c− d (mod 3),
and the bottom left cell with the unique value y such that y ≡ a + b −
d (mod 2) and y ≡ −a − c (mod 3). The divisibility conditions are now
fulfilled for the top row, the leftmost column and both diagonals (the rising
diagonal is verified by summing mod 2 and mod 3 separately).
Now, we leave one cell both in the rightmost column and in the bot-

tom row empty for the time being. For the other n− 3 empty cells in the
rightmost column, there are 3 possible values for each, and for the other
n − 3 empty cells in the bottom row, 2 values for each. Having made all
those choices (which can be done in 3n−3 · 2n−3 ways), the values for the
two remaining cells are now uniquely determined (mod 2 by the values in
the respective row, and mod 3 by the column). The total number of ways to

fill the table is 6(n−1)
2 · 3n−3 · 2n−3 = 6n2−n−2.

S8. Let a, b and c be positive real numbers such that min{ab, bc, ca} > 1.
Prove that

3

√

(a2 + 1)(b2 + 1)(c2+ 1) 6
( a+ b+ c

3

)2
+ 1.

Solution. See IMO 2016 shortlist, problem A1.

S9. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane.
A nonempty, bounded subset S of the plane is said to be nice if

(i) there is a point T ∈ S such that for every point Q ∈ S, the segment
TQ lies entirely in S; and

(ii) for any triangle P1P2P3, there exists a unique point A ∈ S and a
permutation σ of the indices {1, 2, 3} for which triangles ABC and
Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S′ of the set
{(x, y) : x > 0, y > 0} such that if A ∈ S and A′ ∈ S′ are the unique choices
of points in (ii), then the product BA · BA′ is a constant independent of the
triangle P1P2P3.
Solution. See IMO 2016 shortlist, problem G3.

S10. Let ABC be a triangle with AB = AC
2 + BC. Consider the two semicir-
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cles outside the triangle with diameters AB and BC. Let X be the orthogo-
nal projection of A onto the common tangent line of those semicircles. Find
∠CAX.
Answer: 60◦.

A

B

C

E

K

L

M

N

X

Y

Fig. 28

Solution. Let K and L be the
midpoints of the sides AB and BC,
respectively, andM and N the feet
of perpendiculars from K and L,
respectively, to the common tan-
gent of the semicircles (Fig. 28).
Then ∠CAX = ∠LKM. As KM
and LN are radii of the semicir-
cles, KM = AB

2 and LN = BC
2 . Let

Y be the intersection point of line
KL with the common tangent of
the semicircles. As triangles KYM

and LYN are similar, KYLY = KM
LN .

Thus KL+LYLY = AB
BC , whence LY = KL·BC

AB−BC = AC
2 · BCAC

2

= BC. Therefore

sin∠NYL = LN
LY =

BC
2
BC = 1

2 , implying ∠NYL = 30◦. Consequently,
∠CAX = ∠LKM = 90◦ −∠NYL = 60◦.

S11. For any positive integer k, denote the sum of digits of k in its decimal
representation by S(k). Find all polynomials P(x) with integer coefficients
such that for any positive integer n > 2016, the integer P(n) is positive and
S(P(n)) = P(S(n)).
Solution. See IMO 2016 shortlist, problem N1.

S12. Let n be a natural number, n > 3. Find the maximal number of diag-
onals of a regular n-gon one can select in such a way that every two selected
diagonals that intersect each other inside the polygon are perpendicular.
Answer: n− 2 if n is even; n− 3 if n is odd.
Solution. If n is odd, one can select all n− 3 diagonals connecting one

fixed vertex to others. In order to prove that the conditions of the problem
do not allow more, it suffices to show that no two diagonals are perpendic-
ular. Fix one diagonal arbitrarily; it partitions the boundary of the polygon
into two halves, out of which one contains an even number of vertices and
the other contains an odd number of vertices. In the latter half, the side that
connects two medium vertices is parallel to the chosen diagonal. Thus the
existence of two perpendicular diagonals would imply the existence of two
perpendicular sides. This is possible only if n ≡ 0 (mod 4), contradiction.
If n ≡ 2 (mod 4), one can select every second vertex on the boundary

and select initially all diagonals that connect two consecutive selected ver-
tices. Furthermore, select all n2 − 3 diagonals connecting one fixed selected
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vertex to all other selected vertices that it is not connected to yet. Finally,
select the diagonal connecting this very vertex to its opposite vertex of the
original polygon. This way, one selects n− 2 diagonals. If n ≡ 0 (mod 4)
then one can initially select n2 diagonals as in the previous case, and then
select n2 − 2 more diagonals in the n2 -gon formed by the selected diagonals
according to the algorithm described in this paragraph.
Now prove that selectingmore diagonals is impossible. At first we show

that all selected diagonals that intersect some other selected diagonals must
lie in two perpendicular directions. Indeed, consider one pair of mutually
intersecting diagonals. The number of vertices of the polygon lying be-
tween two endpoints of distinct diagonals under consideration is less than
half of the number of all vertices of the polygon. If one more pair of mutu-
ally intersecting diagonals is added, the same holds for it. This means that
the other pair cannot be fit entirely in none of the windows left there by the
initial pair of diagonals. Thus at least one diagonal from the first pair and
one from the second pair intersect, which means that they all must lie in
two perpendicular directions.
Let there be d selected diagonals and k intersection points of selected

diagonals. Consider pieces of the plane into which the selected diagonals
divide the interior of the polygon; all these pieces are polygons whose ver-
tices coincide with vertices of the original polygon and the intersection
points of selected diagonals. The sum of internal angles of all pieces is
(n− 2) · 180◦ + k · 360◦. The sum of the numbers of vertices of these pieces
is n+ 2d+ 4k, since the initial polygon has n vertices, each diagonal adds
2 endpoints and each intersection of two diagonals adds 4. Let w be the
number of pieces; then (n− 2) · 180◦ + k · 360◦ = (n+ 2d+ 4k− 2w) · 180◦,
whence n− 2+ 2k = n+ 2d+ 4k− 2w, implying w = d+ k+ 1.
Let w′ be the number of pieces with at least 4 vertices. All pieces with

at least two right angles have at least 4 vertices, whence every line segment
connecting two neighbouring intersection points of any diagonal is a side
of such piece. Let there be a horizontal and b vertical diagonals selected,
w.l.o.g. a 6 b. Then there are k − a pieces whose two right angles are
consecutive intersection points on some horizontal selected diagonal and
which themselves lie above this diagonal. In addition, there are b− 1 pieces
whose two right angles are consecutive intersection points of some horizon-
tal selected diagonal and which lie below this diagonal and below which
there are no more horizontal diagonals. Hence w′ > k− a+ b− 1 > k− 1.
Consequently, n+ 2d+ 4k > 4w′+ 3(w−w′) = 3w+w′ > 3w+ k− 1 =

3(d+ k+ 1) + k− 1 = 3d+ 4k+ 2, whence d 6 n− 2.
Remark 1. In the case n ≡ 0 (mod 4), another suitable construction can

be given as follows. Enumerate vertices with numbers 0, 1, . . . , n − 1 in
clockwise order. Select all diagonals that connect any vertex i with the ver-
tex n2 − i for every i = − n4 + 1, . . . , n4 − 1 (there are n2 − 1 such diagonals)
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Fig. 29

and all diagonals perpendicular to them (the num-
ber of the latters is also n2 − 1). Altogether, we select
n− 2 diagonals that all lie in two perpendicular di-
rections. (Fig. 29 depicts the situation in the case
n = 12).
Remark 2. This problem, proposed by Estonia,

appeared as C5 in the IMO 2016 shortlist. The so-
lution presented here appeared in a contest paper
and is not given in the shortlist. For other solu-
tions, see the shortlist.

Problems Listed by Topic

Number theory: O1, O5, O6, O10, O15, F1, F2, F5, F8, F9, F13, F14, F18, S1,
S7, S11.
Algebra: O2, O9, O11, O14, O16, F10, F15, S2, S6, S8.
Geometry: O3, O7, O12, O17, F4, F6, F11, F16, S3, S4, S9, S10.
Discrete mathematics: O4, O8, O13, O18, F3, F7, F12, F17, S5, S12.
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