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Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds – at the school,

town/regional and national levels. The best students of each round (except the final)

are invited to participate in the next round. Every year, about 110 students altogether

reach the final round.

In each round of the Olympiad, separate problem sets are given to the students of each

grade. Students of grade 9 to 12 compete in all rounds, students of grade 7 to 8 partici-

pate at school and regional levels only. Some towns, regions and schools also organise

olympiads for even younger students. The school round usually takes place in Decem-

ber, the regional round in January or February and the final round in March or April in

Tartu. The problems for every grade are usually in compliance with the school curricu-

lum of that grade but, in the final round, also problems requiring additional knowledge

may be given.

The first problem solving contest in Estonia took place already in 1950. The next one,

which was held in 1954, is considered as the first Estonian Mathematical Olympiad.

Apart from the Olympiad, open contests are held twice a year, usually in October and

in December. In these contests, anybody who has never been enrolled in a university

or other higher education institution is allowed to participate. The contestants compete

in two separate categories: the Juniors and the Seniors. In the first category, students

up to the 10th grade are allowed to participate; the other category has no restriction.

Being successful in the open contests generally assumes knowledge outside the school

curriculum.

According to the results of all competitions during the year, about 20 IMO team candi-

dates are selected. IMO team selection contest for them is held in April or May. This

contest lasts two days; each day, the contestants have 4.5 hours to solve 3 problems, sim-

ilarly to the IMO. All participants are given the same problems. Some problems in our

selection contest are at the level of difficulty of the IMO but somewhat easier problems

are usually also included.

The problems of previous competitions can be downloaded from

http://www.math.olympiaadid.ut.ee/eng.

Besides the above-mentioned contests and the quiz “Kangaroo” some other regional

competitions and matches between schools are held as well.

*

This booklet contains problems that occurred in the open contests, the final round of

national olympiad and the team selection contest. For the open contests and the final

round, selection has been made to include only problems that have not been taken from

other competitions or problem sources and seem to be interesting enough. The team

selection contest is presented entirely.
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Selected Problems from Open Contests

O-1. (Juniors.) The greatest common divisor of positive integers a, b, c is 1. It is known
that c divides a + 2b and a2 − b2. Prove that c also divides a − b.

Solution 1: Let d = gcd(a + b, c). Since c | a + 2b, also d | a + 2b. Now (a + 2b)− (a +
b) = b and 2(a + b)− (a + 2b) = a are divisible by d. Therefore d is the common divisor
of a, b, c and due to our initial assumption of a, b, c being relatively prime it has to be
1. Hence a + b and c are also relatively prime. But since a2 − b2 = (a − b)(a + b) is
divisible by c, the factor a − b has to be divisible by c.

Solution 2: Since a + 2b is divisible by c, also (a − 2b)(a + 2b) is divisible by c. But
(a − 2b)(a + 2b) = a2 − 4b2; since a2 − b2 is divisible by c, the differences (a2 − b2) −
(a2 − 4b2) = 3b2 and 4(a2 − b2)− (a2 − 4b2) = 3a2 also have to be divisible by c.

If 3 ∤ c, then c | a2 and c | b2. Therefore every prime divisor of c would also be a prime
divisor of a and b, which would contradict the initial assumption. Hence either c = 1,
in which case the problem statement holds trivially, or 3 | c. In the latter case let c = 3c′;
the statements above show that c′ | a2 and c′ | b2. As we saw above, every prime divisor
of c′ would be a prime divisor of a and b, due to which c′ = 1 and c = 3. Now since
a + 2b and 3b are divisible by 3, also (a + 2b)− 3b = a − b is divisible by 3.

O-2. (Juniors.) On the board there are numbers 1, 2, 3, 4, 5 and 6. In every step Juku
deletes some two numbers a and b on the board and writes ab + a + b on the board
instead. He repeats such steps until there is only one number on the board. Find all
possibilities what could be the last number on the board.

Answer: 5039.

Solution 1: Since (a + 1)(b + 1) = c + 1, where c is a number that would be written on
the board instead of a and b, the product of the numbers that are greater by 1 than the
numbers on the board does not change in the process. In the beginning the product is
2 · 3 · 4 · 5 · 6 · 7 or 5040. Consequently the only number that can be on the board in the
end is 5040− 1 = 5039.

Solution 2: Let us define x ∗ y = xy + x + y for every two numbers x and y, then in each
step Juku substitutes some a and b with a ∗ b. The binary operation ∗ is commutative
and associative, due to which the final result is independent on the order the numbers
are being deleted. Therefore in the end the board will contain one number that equals
((1 ∗ 2) ∗ (3 ∗ 4)) ∗ (5 ∗ 6) = (5 ∗ 19) ∗ 41 = 119 ∗ 41 = 5039.

O-3. (Juniors.) In a triangle ABC the midpoints of BC, CA and AB are D, E and F,
respectively. Prove that the circumcircles of triangles AEF, BFD and CDE intersect all
in one point.

Solution 1: Let us first assume that triangle ABC is not a right triangle – then the
circumcenter O of the triangle ABC does not coincide with D, E, F (see fig. 1). As
the circumcenter is in the point of intersection of perpendicular bisectors of the sides,
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∠AEO = 90◦ = ∠AFO, due to which A, E, F, O are concyclic, so O is located on the
circumcircle of AEF. Analogously O is also located on the circumcircles of BFD and
CDE. Therefore O is the point we are looking for.

A B

C

DE

F

O

Figure 1

A B

C

D

E

F

Figure 2

In the end let us also look
at the case where ABC
is a right triangle – with-
out loss of generality let
∠ACB = 90◦ (see fig. 2).
The circumcircles of tri-
angles AEF and BFD ob-
viously pass through F.
As DF ‖ AC and EF ‖ BC
by midline property, we
have DF ⊥ BC and EF ⊥ AC. Therefore also ∠EFD = 90◦. Since ∠DCE = 90◦,
the line segment DE is the diameter of the circumcircle of CDE, due to which it also
passes through F. Therefore F is the point we are looking for.

Solution 2: Since DE, EF and FD are the midsegments of triangle ABC, triangles AEF,
FDB and ECD are congruent. Therefore their circumcircles also have radii of equal
length. Let that length be r.

Let the circumcenters of AEF, BFD and CDE be G, H and I, respectively. The circum-
center of a triangle is located in the point of intersection of perpendicular bisectors of
the sides, therefore G is located on the perpendicular bisector of AF and H on the per-
pendicular bisector of FB. As triangles AEF and FDB are congruent, points G and H are
also located at equal distance from AB, due to which the distance between G and H is
equal to the distance between the perpendicular bisectors of AF and FB. In conclusion

|GH| = 1

2
|AF|+ 1

2
|FB| = 1

2
(|AF| + |FB|) = 1

2
|AB| = |AF| = |FB| = |ED| .

Analogously |HI| = |BD| = |DC| = |FE| and |IG| = |CE| = |EA| = |DF|. Hence
the triangle GIH is congruent to triangles AEF, FDB and ECD and the radius of the
circumcircle of GIH is r. The circumcenter X of triangle GHI therefore satisfies |XG| =
|XH| = |XI| = r, so X is located on the circumcircles of AEF, BFD and CDE.

Solution 3: A homothetic transformation with A being the homothetic center and with

scaling factor
1

2
takes point B to F and C to E, therefore the circumcircle of the triangle

ABC goes to the circumcircle of triangle AFE. Due to factor
1

2
the circumcircle of AFE

passes through the circumcenter O of triangle ABC. Analogously the circumcircles of
BFD and CDE also pass through O.

O-4. (Juniors.) A boardgame board consists of 10 squares in a row that are numbered
1 to 10. On some square there is a button. In one move it is allowed to move the button
to a square whose number is either smaller by 2 or 2 times bigger. Does there exist an
initial location for the button that allows the player to visit all squares of the board? It
is allowed to visit one square several times.

Answer: No.
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Solution: No move allowes the button to be placed to the square number 9. Therefore
the button should start from there to have any hope. If on some later move the button is
placed on an even-numbered square, then it will also stay on an even-numbered square
on every move that follows. Therefore all the odd-numbered squares must be visited
right in the beginning, i.e., the button must be moved to 7, 5, 3, 1. On the next move
there is no other option but to step to square number 2. But now it is impossible to reach
square number 5, since it is odd-numbered, and therefore it is also impossible to reach
10. Therefore it is not possible to visit all the squares.

O-5. (Juniors.) Let us call a natural number interesting if its any two consecutive digits
form a number that is either a multiple of 19 or 21. For example the number 7638 is
interesting, because 76 is a multiple of 19, 63 is a multiple of 21 and 38 is a multiple of
19. How many 2013-digit interesting numbers exist?

Answer: 9.

Solution: Amongst two-digit numbers the multiples of 19 are 19, 38, 57, 76 and 95 and
the multiples of 21 are 21, 42, 63 and 84. From there we get that an interesting number
cannot include digit 0 and if it happens to have digit 1, 2, 3, 4, 5, 6, 7, 8 or 9, then the
next digit has to be 9, 1, 8, 2, 7, 3, 6, 4 or 5, respectively. Therefore the first digit of an
interesting number also determines all the following digits. For the choice of the first
digit there are 9 options, consequently there are also 9 interesting 2013-digit numbers.

O-6. (Juniors.) In a scalene triangle one angle is exactly two times as big as another
one and some angle in this triangle is 36◦. Find all possibilities, how big the angles of
this triangle can be.

Answer: 18◦, 36◦ and 126◦ or 36◦, 48◦ and 96◦.

Solution: Based on the initial conditions the angles of the triangle are α, 2α and 180◦− 3α
and they all have to be different. It remains to perform calculations for three cases:
α = 36◦, 2α = 36◦ and 180◦ − 3α = 36◦.

O-7. (Juniors.) Let the odd part of a positive integer n be the greatest odd integer that
divides n.

Does there exist a positive odd integer that cannot be represented as a product of the
odd parts of two consecutive positive integers?

Answer: Yes.

Solution 1: Let us show that number 11 cannot be represented as a product of the odd
parts of two consecutive positive integers. Assume the opposite: let 11 = x · y, where x
and y are the odd parts of two consecutive positive integers. As 11 is a prime number,
either x = 1 and y = 11 or x = 11 and y = 1. As of the two consecutive integers one is
always odd and the odd part of an odd number is the number itself, either x or y is one
of the two consecutive integers. If it is 1, then the other number can only be 2, but the
odd part of 2 is not 11. If it is 11, then the other number can only be 10 or 12, but neither
of those has odd part equal to 1. In all cases we got a contradiction which proves the
statement.

Solution 2: Let us show 11 cannot be represented in the required way. If this represen-
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tation existed, then due to the primality of 11 the factors would have to be 1 and 11.
Therefore one of the two consecutive integers has to be divisible by 11. But this number
cannot be 11 itself, since neither 10 nor 12 has 1 as its odd part. It also cannot be an odd
multiple of 11, because then its odd part would be the number itself rather than 11. Fi-
nally, it cannot be an even multiple of 11, since in such case the neighbouring numbers
would be odd numbers greater than 1, the odd parts of which are numbers themselves
rather than 1.

Note: Number 11 is the least of possible examples. Indeed, let p(n) stand for the odd part
of number n, then 1 = 1 · 1 = p(1) · p(2), 3 = 1 · 3 = p(2) · p(3), 5 = 1 · 5 = p(4) · p(5),
7 = 7 · 1 = p(7) · p(8) and 9 = 1 · 9 = p(8) · p(9).

O-8. (Juniors.) a) There are three numbers a, b, c such that a 6 b 6 c. Let p, q, r
be the pairwise sums a + b, b + c, c + a in the order such that p 6 q 6 r. Given that
r − q = q − p, is it certainly true that c − b = b − a?

b) There are four numbers e, f , g, h such that e 6 f 6 g 6 h. Let u, v, w, x, y, z be
the pairwise sums of those numbers, in the order u 6 v 6 w 6 x 6 y 6 z. Given that
z − y = y − x = x − w = w − v = v − u, is it certainly true that h − g = g − f = f − e?

Answer: a) Yes; b) No.

Solution: a) If a 6 b 6 c, then a + b 6 a + c 6 b + c, due to which p = a + b, q = a + c
and r = b + c. Equality r − q = q − p can now be written as (b + c) − (a + c) =
(a + c)− (a + b), simplifying to b − a = c − b.

b) Let e = 0, f = 1, g = 2 and h = 4. Their pairwise sums in increasing order are u =
0+ 1 = 1, v = 0+ 2 = 2, w = 1+ 2 = 3, x = 0+ 4 = 4, y = 1+ 4 = 5 and z = 2+ 4 = 6.
Thus z − y = y − x = x − w = w − v = v − u = 1, but h − g = 2 6= 1 = g − f .

O-9. (Juniors.) In the plane there are six different points A, B, C, D, E, F such that
ABCD and CDEF are parallelograms. What is the maximum number of those points
that can be located on one circle?

Answer: 5.

A

B
C

D

E

F

Figure 3

A

B C

D

E

F

Figure 4

Solution: As ABCD and CDEF are par-
allelograms, the line segments AB, CD
and EF are parallel and have same length.
Since it is impossible to draw three chords
of equal length to a circle, not all 6 points
can be concyclic.

A construction with 5 concyclic points is
in fig. 3.

Note. There are many constructions with
5 vertices. We can, e.g., take a rectangle
ABCD, add the fifth point E randomly on the circumcircle of the rectangle and choose
point F such that CDEF would be a parallelogram (see fig. 4).

O-10. (Seniors.) Find the integral part of A =

√

2013 +

√

2012 + . . .

√

2 +
√

1.
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Answer: 45.

Solution 1: On the one hand A2
> 2013 +

√
2012 > 2013 + 44 > 452, there-

fore A > 45. On the other hand we can demonstrate with induction that xn =
√

n +

√

n − 1 + . . .
√

1 <
√

n + 1. This holds in case of n = 1. Suppose it holds

for some n. Then xn+1 =
√

n + 1 + xn <

√

n + 1 +
√

n + 1. It remains to show

that

√

n + 1 +
√

n + 1 <
√

n + 1 + 1, which is equivalent to a trivially true equation

n +
√

n + 2 < n + 2 + 2
√

n + 1. Therefore A = x2013 <
√

2013+ 1 < 46.

Solution 2: Inequality A > 45 is proved as in solution 1. For A < 46, we can repeatedly
use the fact that

√
x < x for all x > 1 to obtain

√

2011 +

√

2010 + . . .

√

2 +
√

1 <
√

2011+ 2010+ . . . + 2 + 1

=

√

2011 · 2012

2
=

√
2023066 < 1423.

Therefore

A <

√

2013+
√

2012 + 1423 =

√

2013 +
√

3435 <
√

2013 + 59 =
√

2072 < 46.

Solution 3: Inequality A > 45 is proved as in solution 1. Notice that
√

a + b <
√

a +
√

b
if a > 0 and b > 0. This gives

2012+

√

√

√

√

2011+ . . . +

√

4 +

√

3 +

√

2 +
√

1

6 2012 +

√

√

√

√

2011 + . . . +

√

4 +

√

3 +
√

2 +

√√
1

6 2012 +

√

√

√

√

2011 + . . . +

√

4 +
√

3 +

√√
2 +

√

√√
1

6 . . . 6 2012+
√

2011+
22√

2010+ . . . +
22010√

2 +
22011√

1

< 2012+ 45 + 7 + 3 + 2 · 2008 = 6083,

which gives A <

√

2013+
√

6083 <
√

2013+ 78 < 46.

Solution 4: Inequality A > 45 is proved as in solution 1.

Let xn =

√

n +

√

(n − 1) + . . . +

√

2 +
√

1, then xn =
√

n + xn−1. Notice that xn >

xn−1, as in the expression of xn, every member is greater than the corresponding mem-
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ber in the expression xn−1 =

√

(n − 1) +

√

(n − 2) + . . . +

√

1 +
√

0. Therefore x2013 >

x2012 holds whence the equality x2
n − xn−1 − n = 0 implies x2

2013 − x2013 − 2013 < 0.
Solving the corresponding equation gives

x =
1 +

√
1 + 4 · 2013

2
=

1 +
√

8053

2
<

1 +
√

902

2
= 45,5 < 46

for the greater root, therefore A = x2013 < 46.

Solution 5: Inequality A > 45 is proved as in solution 1.

Let xn =

√

n +

√

(n − 1) + . . . +

√

2 +
√

1, then x2
n = n + xn−1. Suppose that x2013 >

46, then x2
2013 = 2013 + x2012 > 462 = 2116, then x2012 > 103. Analogously we would

get that x2011 > 8597. On the other hand it is clear that x2010 < x2011 (see solution 4),
due to which x2

2011 = 2011 + x2010 < 2011 + x2011 and x2011(x2011 − 1) < 2011. Since
x2011 > 2, we get that x2011 < 2011, which contradicts the inequality x2011 > 8597.
Therefore A = x2013 < 46.

O-11. (Seniors.) Find all natural numbers n for which there exist primes p and q such
that p(p + 1) + q(q + 1) = n(n + 1).

Answer: 3 and 6.

Solution: The equation is equivalent to p(p + 1) = (n − q)(n + q + 1). Since the dif-
ference of the factors in the r.h.s. is greater than 1, we must have n − q < p and
n + q + 1 > p + 1. As p is a prime number, p | n + q + 1. Let n + q + 1 = kp, k > 1. Now
the initial equation yields p(p + 1) = (kp − 2q − 1)kp, which is equivalent to

2qk = (k + 1)(pk − p − 1). (1)

As k and k + 1 are relatively prime, 2q | k + 1. Since q is a prime number and k > 1,
there are only two possibilities: q = k + 1 or 2q = k + 1. In the first case, substituting k
to (1) gives (p − 2)(q − 2) = 3, implying p = 3, q = 5 (or the other way around). Then
n = 6 by the initial equation. In the second case similarly we get (p − 1)(q − 1) = 1,
where the only possibility is p = q = 2 and n = 3.

O-12. (Seniors.) Find all positive real-valued solutions to



















x − y + 1
z = 2013,

y − z + 1
x = 2013,

z − x + 1
y = 2013.

Answer: x = y = z =
1

2013
.

Solution 1: Suppose w.l.o.g. that z > x and z > y. From the second equation
1

x
> 2013,
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therefore x 6
1

2013
. From the third equation

1

y
6 2013, due to which y >

1

2013
> x.

But now from the first equation
1

z
> 2013, therefore z 6

1

2013
. Since we assumed that

z > y >
1

2013
, the only possibility is z = y =

1

2013
, then also x =

1

2013
.

Solution 2: Adding up all the equations, we get
1

x
+

1

y
+

1

z
= 3 · 2013. Multiplying the

first equation by z, the second one by x and third one by y and adding together we get
3 = 2013(x + y + z). Therefore the arithmetic and harmonic mean of x, y, z are both

equal to
1

2013
. Consequently x = y = z =

1

2013
.

A B

C

S

cAcB

Figure 5

O-13. (Seniors.) In a plane there is a triangle
ABC. Line AC is tangent to circle cA at point
C and circle cA passes through point B. Line
BC is tangent to circle cB at point C and circle
cB passes through point A. The second inter-
section point S of circles cA and cB coincides
with the incenter of triangle ABC. Prove that
the triangle ABC is equilateral.

Solution: By the tangent-secant theorem we have ∠BCS = ∠CAS and ∠ACS = ∠CBS
(see fig. 5). The incenter of a triangle is the point of intersection of angle bisec-
tors, therefore ∠CAB = 2∠CAS = 2∠BCS = ∠BCA and ∠CBA = 2∠CBS =
= 2∠ACS = ∠BCA. Hence ABC is equilateral.

O-14. (Seniors.) 20 students participated on a field trip. They all wanted to climb on
top of a lighthouse, but only one person was allowed to the lighthouse at once. The
order of climbing was determined by a lottery such that in the beginning every student
is randomly assigned a number of 1 through 20 (such that no number is repeated). The
one who gets the smallest number is the first one to climb the lighthouse. In the next
round all the rest of the students are randomly assigned numbers 1 through 19 and the
one who gets the smallest number gets to be the next one to climb the lighthouse. This
process is repeated until all the students have climbed the lighthouse. Due to a strange
occurrence no one student was assigned the same number more than once. Miku was
assigned the number 14 in the first round. Find all possibilities what number could have
been assigned to Miku in the 9th round.

Answer: 6.

Solution: Let the number of students be n. The last student to climb the lighthouse has
got all the numbers 1 through n with the lottery. As number n is only available in the
first round, that student had to get n in the first round. As number n− 1 is only available
in 1st and 2nd round and in the 1st round that student did not get it, the student got
n − 1 in the 2nd round. Analogously, since n − 2 is only available in the first three
rounds and that student did not get it in the first two rounds, the student got n − 2 in
the 3rd round. Continuing the same way shows that the last one to climb the lighthouse
got numbers n through 1 in decreasing order, or got the largest available number in
every round.

8



The rest of the students who only participated in rounds 1 through n − 1 have to share
in the first round numbers 1 through n − 1, in the second one 1 through n − 2, in third
one 1 through n − 3 and so on. Therefore for them this process is as if the person last
to climb the tower did not partcipate at all and n would be smaller by 1. For this holds
for any n, all students get the numbers in decreasing order with every next one being
smaller by 1, that includes Miku. This allowes us to find that in the 9th round Miku got
number 6.

O-15. (Seniors.) Find all pairs of positive rational numbers where the sum of the
numbers in a pair is an integer and the sum of (multiplicative) inverses of the numbers
in a pair is also an integer.

Answer: (1, 1), (2, 2) and
(1

2
,

1

2

)

.

Solution 1: Let the numbers in the pair be represented as reduced fractions
a

b
and

c

d
. For

a

b
+

c

d
=

ad + bc

bd
to be an integer, we must have

ad + bc = k · bd (2)

with k being some integer. By writing the equality (2) as bc = (kb − a) · d and taking
into account that c and d are relatively prime, we see that b is divisible by d. By writing
the same equality (2) in a form ad = (kd − c) · b and taking into account that a and b are
relatively prime, we see that d is divisible by b. Therefore b = d.

For also
b

a
+

d

c
to be an integer, we analogously must have a = c. Therefore

a

b
=

c

d
.

Consequently
a

b
+

c

d
=

2a

b
and

b

a
+

d

c
=

2b

a
are both integers. If a = b, then

a

b
= 1. If

a < b, then
2a

b
< 2, implying

2a

b
= 1 and

a

b
=

1

2
as the only possibility. If a > b, then

similarly
a

b
= 2.

Solution 2: Let the numbers in the pair be represented as reduced fractions
a

b
and

c

d
, and

let k =
a

b
+

c

d
and l =

b

a
+

d

c
. Then

a

b
= k− c

d
=

kd − c

d
and

b

a
= l − d

c
=

lc − d

c
, whence

a

b
=

c

lc − d
. Therefore

kd − c

d
=

c

lc − d
, or cd = (kd − c)(lc − d). The resulting equation

is equivalent to l · c2 − kld · c + kd2 = 0, giving

c =
kld ±

√
k2l2d2 − 4kld2

2l
= d · kl ±

√
k2l2 − 4kl

2l
. (3)

For c to be an integer, we must have k2l2 − 4kl = n2 where n is an integer. Now

(kl − 2)2 = n2 + 4 .

Therefore n2 + 4 must also be a square of an integer. This is only possible when n = 0 –
therefore kl = 0 or kl = 4. The first option is not possible, because k and l are the sums
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of positive real numbers. The second option gives three possible cases: (k, l) can either

be (1, 4), (2, 2) or (4, 1). It remains to find all possible values of
c

d
from (3) and calculate

a

b
= k − c

d
.

O-16. (Seniors.) The angles of a triangle are 22.5◦, 45◦ and 112.5◦. Prove that inside
this triangle there exists a point that is located on the median through one vertex, the
angle bisector through another vertex and the altitude through the third vertex.

A

B

C

D

E

F

X

Y

K

Figure 6

Solution 1: Look at the triangle ABC, where ∠CAB =
22.5◦, ∠ABC = 45◦ and ∠BCA = 112.5◦.

Let D be the point of intersection of BC and median from
vertex A, E be the point of intersection of angle bisector
from vertex B and AC, and F be the point of intersection
of altitude from vertex C and AB (see fig. 6). As ∠FBC =
45◦ and ∠CFB = 90◦, triangle FBC is a right isosceles
triangle with |CF| = |FB|.
Let X and Y be the points of intersection of the line that passes through point D and is
parallel to CF, with lines AC and AF, respectively. We have ∠YAX = 22.5◦, ∠XYA =
90◦ and ∠AXY = 180◦ −∠YAX −∠XYA = 67.5◦. Therefore

∠XCD = 180◦ −∠BCA = 67.5◦ = ∠AXY = ∠CXD ,

due to which |XD| = |CD| = |DB|.
As line segments DY and CF are parallel, DY is the midsegment of triangle BCF. Hence

|XD|
|DY| =

|DB|
|DY| =

|CB|
|CF| =

|CB|
|FB| .

Let now K be the point of intersection of BE and CF. The angle bisector property gives

that
|CK|
|KF| =

|CB|
|FB| , so

|XD|
|DY| =

|CK|
|KF| , from which ∠FAK = ∠YAD. Therefore also AD

passes through K, QED.

A

B

C

D

E

F

Z

Figure 7

Solution 2: Similarly to the previous solution we pick
triangle ABC, mark points D, E and F and show that

|CF| = |FB|. Additionally notice that ∠ABE =
∠ABC

2
=

45◦

2
= 22.5◦ = ∠BAE, which gives |BE| = |AE|.

Let now Z be a point on BC such that ∠BEZ = 90◦ (see

fig. 7). Then ∠ZBE =
∠ABC

2
= 22.5◦ = ∠CAF and

∠BEZ = 90◦ = ∠AFC, hence triangles BEZ and AFC are
similar. Additionally

∠EZC = 180◦ −∠ZBE −∠BEZ = 67.5◦ = 180◦ −∠BCA = ∠ECZ ,

10



which gives |EZ| = |EC|. Thus
|AE|
|EC| =

|BE|
|EZ| =

|AF|
|FC| =

|AF|
|FB| . Therefore

|AF|
|FB| ·

|BD|
|DC| ·

|CE|
|EA| = 1 and Ceva’s theorem gives that AD, BE and CF intersect in one point.

Solution 3: Similarly to first solution we choose triangle ABC, mark points D, E, F and
Y and show that |CF| = |FB|.
Let the points of intersection of CF with angle bisector BE and median AD be K1 and
K2, respectively. Let h1 = |FK1| and h2 = |FK2| and in addition let u = |AF| and v =
|CF| = |FB|. Let us show that h1 = h2, then K1 = K2. Using the similarity of triangles
BFK1 and CFA, similarity of triangles BCK1 and ABC and similarity of triangles AFK2

and AYD, we get the equalities

h1

v
=

v

u
,

v − h1√
2v

=

√
2v

u + v
,

h2

u
=

1
2v

u + 1
2v

which imply
v2

u
= h1 =

(u − v)v

u + v
and h2 =

uv

2u + v
. From equation

v2

u
=

(u−v)v

u + v
we

get 2u + v =
u2

v
, therefore h2 =

uv

2u+v
=

v2

u
= h1.

O-17. (Seniors.) During the schoolyear 22 olympiads were held. At each one 5 best
students were awarded. It is known that the prize receivers of every two olympiads
had exactly 1 student in common. Show that there exists a student who got a prize at
every olympiad.

Solution: Look at an arbitrary olympiad, let that be A1, where the prizes went to some
5 students. Each of the remaining 21 olympiads had to have someone among those 5
receiving a prize. By pigeonhole principle there exists a student who in addition to A1

also got a prize at at least 5 olympiads. Let that student be a and those olympiads be
A2, . . . , A6.

Let now B be an arbitrary olympiad that is different from A1, . . . , A6. As each one of the
olympiads A1, . . . , A6 has one prize-winning student in common with B and exactly 5
students get prizes at B, applying pigeonhole principle again shows that one of those
five had to get a prize at at least two of A1, . . . , A6. Since these two have student a in
common and according to initial conditions that student is the only one, this means that
a also got a prize at olympiad B. But since we picked B arbitrarily, a must have got a
prize at every olympiad.

O-18. (Seniors.) a) Does there exist an integer c and a polynomial P(x) with integer
coefficients for which P(c) 6= c, but P(P(c)) = c?

b) Does there exist an integer c and a polynomial P(x) with integer coefficients for
which P(c) 6= c and P(P(c)) 6= c, but P(P(P(c))) = c?

Answer: a) Yes; b) No.

Solution: a) Take P(x) = −x and c = 1, then P(c) = −1 6= c and P(P(c)) = P(−1) =
1 = c.

11



b) Suppose that there exist a polynomial with integer coefficients P(x) and an integer
c, for which P(c) 6= c, P(P(c)) 6= c and P(P(P(c))) = c. Notice that P(c) 6= P(P(c)),
because otherwise P(P(c)) = P(P(P(c))) = c, which would contradict the assumption.

In the following calculations we will use the well-known property of polynomials with
integer coefficients: k − m | P(k)− P(m) for any distinct integers k and m.

Using this and the premise that P(P(P(c))) = c, we see that number c − P(c) =
P(P(P(c)))− P(P(P(P(c)))) is divisible by P(P(c))− P(P(P(c))) = P(P(c))− c, which
in turn is divisible by P(c) − P(P(c)), which in turn is divisible by c − P(c). Hence
|c − P(c)| > |P(P(c)) − c| > |c − P(c)|, implying |c − P(c)| = |P(P(c)) − c|, and simi-
larly |c − P(c)| = |P(c)− P(P(c))|.
Therefore three numbers c, P(c) and P(P(c)) are all at the same distance away from
each other on the number line, which is possible only when those numbers coincide,
that is c = P(c) = P(P(c)), which contradicts the assumptions made. This contradiction
shows that polynomial P(x) and integer c do not exist.

Selected Problems from the Final Round of National

Olympiad

F-1. (Grade 9.) In the product

(

1 +
1

1

)

·
(

1 +
1

3

)

·
(

1 +
1

5

)

· . . . ·
(

1 +
1

2n − 1

)

the denominators of the fractions are all odd numbers from 1 to (2n − 1). Is it possible
to choose a natural number n > 1 such that this product would evaluate to an integer?

Answer: No.

Solution: By manipulating the given product we get

(

1 +
1

1

)

·
(

1 +
1

3

)

·
(

1 +
1

5

)

· . . . ·
(

1 +
1

2n − 1

)

=
2

1
· 4

3
· 6

5
· . . . · 2n

2n − 1

=
2 · 4 · 6 · . . . · 2n

1 · 3 · 5 · . . . · (2n − 1)
.

For it to be an integer, the number 2 · 4 · 6 · . . . · 2n should be divisible by 1 · 3 · 5 · . . . ·
(2n − 1). But since

2 · 4 · 6 · . . . · 2n = (2 · 1) · (2 · 2) · (2 · 3) · . . . · (2 · n) = 2n · (1 · 2 · 3 · . . . · n)

and number 1 · 3 · 5 · . . . · (2n − 1) is odd, number 1 · 2 · 3 · . . . · n should be divisible
by 1 · 3 · 5 · . . . · (2n − 1). In case of n > 1 this is impossible, because 1 · 2 · 3 · . . . · n <

1 · 3 · 5 · . . . · (2n − 1).

Remark: The fact that in case of n > 2 the fraction
2 · 4 · 6 · . . . · 2n

1 · 3 · 5 · . . . · (2n − 1)
does not evaluate
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to an integer can be shown more easily using Chebyshev’s theorem, accorcing to which
for every n > 2 there always exists at least one prime between n and 2n. As this prime
is certainly odd, it must occur as a factor of the product that is the denominator of the
resulting fraction. But since in the numerator all the factors are in the form 2i where
i 6 n, these factors cannot be divisible by primes greater than n.

F-2. (Grade 9.) A train departed from the station 12 minutes later than planned. If the
train would not make any stops on the way and would travel at average speed equal
to what would be the average speed between stops according to the timetable, then it
would reach the destination exactly at the right time. But if the train would stop in
every station for the same amount of time it was supposed to, then between the station
it would have to travel with average speed 40% higher than before in order to reach the
destination on time. Find the travelling time of the train according to the timetable.

Answer: 54 minutes.

Solution: Let the time we are looking for be t. The conditions of the problem imply that
t − 12 min = 1.4 · (t − 24 min), from which 0.4t = 21.6 min and t = 54 min.

F-3. (Grade 9.) On the sides BC, CA and AB of the triangle ABC there are points D,
E and F, respectively, such that points A, B, D and E are concyclic, points B, C, E and
F are concyclic and points A, C, D and F are concyclic. Does this setup require for the
triangle ABC to be equilateral?

A B

C

D

E

F

Figure 8

Answer: No.

Solution: Let us show that the triangle ABC can be any
acute triangle. Let D, E and F be the feet of the altitudes
drawn from vertices A, B and C, respectively (see fig. 8).
Since ∠ADB = 90◦ = ∠AEB, points D and E are on the
circle with diameter AB. Analogously E and F are located
on the circle with diameter BC and F and D on the circle
with diameter CA.

F-4. (Grade 9.) Find the greatest natural number n for which it is possible to choose n
vertices of a cube such that no three of them form a right triangle.

A

B

C

D

Figure 9

Answer: 4.

Solution: Let some vertex of a cube be A and let B, C and
D be the opposite vertices of the faces of the cube that A
belongs to (see fig. 9). Then of the vertices B, C and D
any two are also the opposite vertices of some face of the
cube. Therefore any two of the chosen four vertices are at
the distance of a face diagonal of the cube. Therefore any
three form an equilateral rather than a right triangle.

Let us now look at the situation where we choose at least
5 vertices. Two opposite faces of the cube include all the vertices of the cube. Therefore
at least one of the two opposite faces has to include at least 3 of the chosen vertices. But
three vertices of a square form a right triangle.
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F-5. (Grade 9.) Juku writes down all 20-digit numbers in which each of digits 3, 4, 5
and 6 appear five times in a row (in some order). Prove that it is possible to choose two
of those numbers such that their difference is divisible by 207.

Solution: As 207 = 9 · 23 and 9 and 23 are relatively prime, it suffices to find a differece
that would be divisible by both 9 and 23. All the 20-digit numbers listed are divisible by
9 because the sum of their digits is 90. Therefore the difference of any two of them is also
divisible by 9. It remains to show that the difference of some two of them is divisible
by 23. For this note that there are 24 different orderings of 3, 4, 5 and 6. Therefore there
are 24 numbers written in total, but there are 23 different possible remainders. So there
must exist some two among those that give the same remainder when divided by 23.
Their difference is divisible by 23.

F-6. (Grade 10.) Let a and n be positive integers. Prove that

⌊ a

n

⌋

+

⌊

a + 1

n

⌋

+ . . . +

⌊

a + n − 1

n

⌋

= a.

Solution 1: Let
⌊ a

n

⌋

= q; then a = qn + r, where 0 6 r < n. Divide the addends

given into two groups: in the first one there are n − r addends, where the numerators
of the fractions are equal to numbers from qn + r to qn + (n − 1), and in the other one
the rest of the r addends, where the numerators are equal to numbers from q(n + 1) to
q(n + 1) + (r − 1). The integral parts of the first n − r fractions are equal to q and the
integral parts of the last r fractions are equal to q + 1. Thus

⌊ a

n

⌋

+

⌊

a + 1

n

⌋

+ . . . +

⌊

a + n − 1

n

⌋

= q · (n − r) + (q + 1) · r

= qn − qr + qr + r
= qn + r = a.

Solution 2: Let us induct on a. If a = 0, then the numerators of the fractions are
0, 1, . . . , n − 1, all natural numbers less than n. Thus all the integral parts in the sum
are equal to 0 and the sum is 0 as required. For the inductive step the following suffices:

⌊

a + 1

n

⌋

+ . . . +

⌊

a + n

n

⌋

= a −
⌊ a

n

⌋

+
⌊ a

n
+ 1
⌋

= a −
⌊ a

n

⌋

+
⌊ a

n

⌋

+ 1 = a + 1.

F-7. (Grade 10.) Let a, b and c be real numbers for which abc = 1. Prove that

1

1 + a2014
+

1

1 + b2014
+

1

1 + c2014
> 1.

Solution 1: Let a2014 = u, b2014 = v and c2014 = w; then abc = 1 gives that uvw = 1. As
the numerators of the l.h.s. of the inequality to be proven are positive, the inequality is
equivalent to

(1 + v)(1 + w) + (1 + w)(1 + u) + (1 + u)(1 + v) > (1 + u)(1 + v)(1 + w).
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By expanding, simplifying and using uvw = 1, we get 1 + u + v + w > 0. But this is
true, since u, v and w are positive.

Solution 2: Let a2014 = u, b2014 = v and c2014 = w. Then abc = 1 gives that uvw = 1.

Therefore there exist positive real numbers x, y, z such that u =
x

y
, v =

y

z
and w =

z

x
.

The inequality can then be written as
1

1 + x
y

+
1

1 + y
z

+
1

1 + z
x

> 1 which is equivalent to

y

x + y
+

z

y + z
+

x

z + x
> 1.

But this inequality can be obtained by adding the obvious inequalities
y

x + y
>

y

x + y + z
,

z

y + z
>

z

x + y + z
and

x

z + x
>

x

x + y + z
.

Solution 3: Let a2014 = u, b2014 = v and c2014 = w; then abc = 1 gives that uvw = 1.
W.l.o.g., let w be the greatest of u, v, w. Then w > 1, because otherwise u, v, w would all
be less than 1 and their product could not be 1. Thus uv 6 1. Now

1

1 + u
+

1

1 + v
− 1 =

(1 + v) + (1 + u)− (1 + u)(1 + v)

(1 + u)(1 + v)
=

1 − uv

(1 + u)(1 + v)
> 0.

Thus
1

1 + u
+

1

1 + v
> 1, from which the desired inequality can be concluded.

F-8. (Grade 10.) In an acute triangle ABC let the point of intersection of the altitude
through B and the angle bisector through C be D. Let E be the point symmetrical to
point D w.r.t. axis AC. Points A,B, C and E are concyclic. Prove that triangle ABC is
isosceles.

A

B

C

D

E

B′

C ′

Figure 10

Solution 1: Let B′ be the point of intersection of lines BD and
AC and C′ be the point of intersection of lines CD and AB (see
fig. 10). Then ∠ACC′ = ∠ACD = ∠ACE = ∠ABE = ∠ABB′.
As triangles ABB′ and ACC′ share an angle at vertex A, they
are similar due to having two identical angles. Therefore also
∠AC′C = ∠AB′B = 90◦. Thus CC′ is the altitude of triangle
ABC, meaning that the altitude and the angle bisector through
vertex C coincide. Therefore the triangle ABC is isosceles.

Solution 2: Use a known theorem according to which the ortho-
center of a triangle is reflected from each side to the circumcircle
of the triangle. As the point E on the extension of the altitude drawn from vertex B is
located on the circumcircle of triangle ABC, point D must be the orthocenter of the tri-
angle ABC. As the angle bisector drawn from vertex C passes through that point, it
must coincide with the altitude. Therefore ABC is isosceles.

F-9. (Grade 10.) For which positive integers k can the integers 1, 2, 3, . . . , (2k)2 be
arranged as a 2k × 2k table in such a way that none of the row sums and column sums
had the same parity as k?
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1 1 1 0

1 1 0 1

1 0 0 0

0 1 0 0

Figure 11

Answer: for all k > 2.

Solution 1: Such an arrangement is impossible for k = 1. In order to make
all row sums and column sums in 2 × 2 table even, both odd numbers
should occur in the same row and also in the same column, which is im-
possible.
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.
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.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1

. . . . . .

0 1

1 0

. . . . . .

1 0

0

1

. . .

. . .

0

1

1

0

. . .

. . .

1

0

0 1

1 0

︸
︷
︷

︸

k − 1

rows

︸
︷
︷

︸

k + 1

rows

︸ ︷︷ ︸

k − 1

columns

︸ ︷︷ ︸

k + 1

columns

Figure 12

In the rest, let 0 and 1 denote any even and odd num-
ber, respectively. For k = 2, one suitable arrangement
is shown in fig. 11. A way how to obtain a suitable ar-
rangement for k + 1 from any suitable arrangement for
k is shown in fig. 12. The parity of the sum of each old
row and column is inverted; each new column or row
contains either k or k+ 2 odd numbers, whence the par-
ity of the row and column sums is the opposite to that of
k+ 1. Hence the extended table meets the requirements.

Solution 2: Another construction for all k > 2 goes as
follows. For k = 2 and k = 3, suitable arrangements of
0s and 1s are depicted in fig. 13 and 14, respectively. We
show now how to get an arrangement for k + 2 from an

arbitrary arrangement for k. Initially, extend the 2k × 2k table with zeros by lying them
as a round strip with width 2 around the table. As (2(k + 2))2 − (2k)2 = 16k + 16 =
16(k + 1), exactly 8(k + 1) of these zeros must be turned to ones.

0 0 0 1

0 0 1 0

0 1 1 1

1 0 1 1

Figure 13

1 1 0 0 1 1

1 1 0 1 1 0

0 0 1 1 0 0

0 1 1 0 0 0

1 1 0 0 1 1

1 0 0 0 1 0

Figure 14

• For odd k, the required number of zeros can be cho-
sen blockwise with size 2 × 2 in an arbitrary man-
ner. The parity of the number of ones in the existing
rows and columns remain unchanged and also the
new rows and columns have even sums as needed.

• If k is even then the number of ones in each row and
column must be odd. By changing zeros into ones in the two blocks at both ends of
one diagonal of the table, this property starts to hold. Other necessary changes can
be done blockwise like in the previous case.

Figure 15

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 16

Solution 3: Yet another con-
struction for all k > 2 fol-
lows. Divide the 2k × 2k ta-
ble into 2k cyclic diagonals
(in fig. 15, one of such cyclic
diagonals of the 8 × 8 table
is coloured). Each cyclic di-
agonal contains exactly one
cell from each row and each
column.

Choose two cyclic diago-
nals with exactly one diag-
onal between them. Fill both chosen diagonals with 0 and 1 alternatingly (see fig. 16).
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As a result, there is either 0 or 2 ones in each row and column. Now fill half of the
remaining diagonals entirely with zeros and the other half with ones. As there are 2k
diagonals in total, exactly k− 1 of them are filled entirely with ones. Consequently, there
is either k − 1 or k + 1 ones in each row and column.

F-10. (Grade 10.) Let m be a positive integer. Prove that if Mari writes at least m + 3
numbers on the board, then Jüri can choose 4 of those such that the sum of some two of
those and the sum of the other two give the same remainder when divided by m.

Solution: As Mari writes down m+ 3 numbers and there are only m different remainders
when dividing by m, there must be two that give equal remainders when divided by m;
let those numbers be a and b. The rest of the m + 1 include two that also give equal
reminders when divided by m; let those be c and d. Now a + c and b + d give the same
remainder when divided by m, thus Jüri can choose the numbers a, b, c and d.

F-11. (Grade 11.) How many positive integers n are there for which 2014 · n is divisible
by 2014 + n?

Solution 1: Let d = gcd(2014, n) and 2014 = da and n = dx; then a and x are relatively
prime. As 2014n = d2ax and 2014 + n = d(a + x), the number 2014n is divisible by
2014 + n precisely when dax is divisible by a + x. As numbers a and x are relatively
prime, both of them must also be relatively prime to a+ x, which also means that ax and
a + x are relatively prime. Thus dax is divisible by a + x precisely when d is divisible by
a + x. This gives that d > a. From the equality da = 2014, let us look at all the cases; the
positive divisors of the number 2014 are 1, 2, 19, 38, 53, 106, 1007, 2014.

• If a = 1, d = 2014, then a + x | 2014. As a + x > 1, there are 7 possibilities.

• If a = 2, d = 1007, then a + x | 1007. As a + x > 2, there are 3 possibilities.

• If a = 19, d = 106, then a + x | 106. As a + x > 19, there are 2 possibilities.

• If a = 38, d = 53, then a + x | 53. As a + x > 38, there is 1 possibility.

Those add up to 13 possibilities.

Solution 2: As the number 2014 + n is always a divisor of 2014 · (2014 + n) = 20142 +
2014n, the number 2014 + n is a divisor of 2014n if and only if 2014 + n is a divisor
of 20142. The canonical representation 20142 = 22 · 192 · 532 shows that the number of
divisors of 20142 is (2 + 1) · (2 + 1) · (2 + 1) = 27. The middle one of them is 2014 and
13 divisors are expressible in a form 2014 + n for some positive integer n. Thus there
are 13 possibilities for n.

F-12. (Grade 11.) Prove that for any positive real numbers a, b and c

1 + ab

c
+

1 + bc

a
+

1 + ca

b
>

√

a2 + 2 +
√

b2 + 2 +
√

c2 + 2.

Solution: By manipulating the l.h.s. we get

1 + ab

c
+

1 + bc

a
+

1 + ca

b
=

(

1

a
+

1

b
+

1

c

)

+ abc

(

1

a2
+

1

b2
+

1

c2

)

. (4)
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For any real numbers x, y, z it holds that x2 + y2 + z2 > xy + yz + zx, because we can

get it by adding together the AM-GM inequalities
1

2
x2 +

1

2
y2 > xy,

1

2
y2 +

1

2
z2 > yz and

1

2
z2 +

1

2
x2 > zx. Thus

1

a2
+

1

b2
+

1

c2
>

1

ab
+

1

bc
+

1

ca
, from which

abc

(

1

a2
+

1

b2
+

1

c2

)

> abc

(

1

ab
+

1

bc
+

1

ca

)

= a + b + c.

Together with the equality (4) this gives

1 + ab

c
+

1 + bc

a
+

1 + ca

b
>

(

1

a
+

1

b
+

1

c

)

+ (a + b + c). (5)

As

(

x +
1

x

)2

= x2 + 2 +
1

x2
> x2 + 2 for any x > 0, we have

(

a +
1

a

)

+

(

b +
1

b

)

+

(

c +
1

c

)

>

√

a2 + 2 +
√

b2 + 2 +
√

c2 + 2.

Using this together with (5), we get the necessary inequality.

Remark. The intermediate result (5) can be proven more directly using the rearrange-
ment inequality. Because of symmetry we can assume the ordering a > b > c, which

implies
1

c
>

1

b
>

1

a
, as well as 1 + ab > 1 + ca > 1 + bc. Thus the rearrangement

inequality gives

1 + ab

c
+

1 + bc

a
+

1 + ca

b
>

1 + ab

a
+

1 + bc

b
+

1 + ca

c
=

1

a
+ b +

1

b
+ c +

1

c
+ a.

A B

CD

E

F

E′

Figure 17

F-13. (Grade 11.) Malle drew a rhombus ABCD and
chose points E and F on sides AB and BC, respectively,
such that the triangle DEF is equilateral. Malle was very
surprised when she discovered that there is another pos-
sibility to choose points E and F on sides AB and BC, re-
spectively, such that DEF is equilateral. What can be the
measures of the angles of this rhombus?

Answer: 60◦ ja 120◦.

Solution 1: There is clearly only one way to choose points E
and F on sides AB and BC, respectively, such that E and F would be symmetrical with
respect to the diagonal BD and ∠EDF = 60◦. Thus it is possible in Malle’s rhombus
to choose E and F asymmetrically with respect to diagonal BD such that triangle DEF
is equilateral; let us consider one of the possible setups. W.l.o.g., we can assume that
|EB| < |BF| (otherwise we can switch the roles of A and C and the roles of E and F). Let
α = ∠BAD = ∠BCD and β = ∠AED. Also let E′ be the point symmetrical to E with
respect to diagonal BD (see fig. 17); then |DE′| = |DE| = |DF| gives that triangle E′DF
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is isosceles and ∠BFD = ∠FE′D = ∠AED = β. Therefore

∠CDF = 180◦ −∠DCF −∠DFC = 180◦ − α − (180◦ − β) = β − α.

Now

180◦ − α = ∠ADC = ∠ADE +∠EDF +∠FDC

= (180◦ − α − β) + 60◦ + (β − α) = 240◦ − 2α.

From here α = 60◦, that is the angles of the rhombus are 60◦ and 120◦.

A B

CD

E1

F1

E2

F2

Figure 18

Solution 2: Let the first choices of Malle be E1 and F1 and
second ones E2 and F2 (see fig. 18). As ∠E1DF1 = 60◦ =
∠E2DF2 and |DE1| = |DF1| and |DE2| = |DF2|, the rota-
tion of the plane by 60◦ around point D that takes E1 to
F1 must also take E2 to F2. The same rotation must then
take the line E1E2 to F1F2 or line AB to line BC. Therefore
∠ABC = 120◦, thus the angles of the rhombus are 60◦ and
120◦.

Remark: In a rhombus with angles 60◦ and 120◦ there are
actually infinitely many possibilities to draw an equilateral triangle with one vertex in
the vertex of the rhombus and the other two on the sides.

F-14. (Grade 11.) In a 2n × 2n grid exactly half of the squares have been coloured black
and the other half are white. In one step one can take some 2 × 2 square in this grid
and reflect its four squares w.r.t. the horizontal or vertical central axis. Which positive
integers n make it possible to get from any initial configuration to a state where the
whole board has been coloured chessboard-style?

Answer: Every n > 2.

Figure 19

Solution: In case of n = 1 it is not possible to get the chessboard-pattern
if 2 × 2 the initial configuration is like in fig. 19, because adjacent same-
coloured squares are same-coloured also after reflecting.

Let us now show that for any n > 2 we can start from any initial configura-
tion and reach the chessboard pattern. For that we can show that whenever

we have some wrong-coloured squares, we can reduce their number by taking some fi-
nite number of steps. Note that a wrong-coloured square turns into a right-coloured
square on the other side of the axis of reflection and the other way round. Let us define
a double reflection to be reflecting the same 2 × 2 area first horizontally and then verti-
cally. A double reflection is equivalent to a reflection with respect to the centre of the
2× 2 square, whereas the wrong-coloured squares will remain wrong-coloured and the
right-coloured squares right-coloured after the reflection.

First suppose that there exist two adjacent same-coloured squares. W.l.o.g., let those
two wrong-coloured squares be in the same row. As n > 2, we can also assume that this
row is at least third from the top and that there is at least one column to the right of the
squares under consideration. Let us mark the wrong-coloured square with W and the
right-coloured square with R on the figure; x means one or the other and x′ means the
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opposite of x (if x is right then x′ is wrong and the other way round).

W W

W x −→

R R

x
′ R

Figure 20

• If out of the two adjacent wrong-coloured squares
at least one has a wrong-coloured upper neighbour,
then by reflecting w.r.t. the vertical axis the num-
ber of wrong-coloured squares decreases by at least
2 (fig. 20).

W W

R R

W

−→

R R

W W

W

Figure 21

• If both upper neighbours of the two adjacent wrong-
coloured squares are right-coloured, but at least one
of them in turn has wrong-coloured upper neighbour,
then by reflecting w.r.t. the vertical axis we can take
the two adjacent wrong-coloured squares up by one
row, so that the number of wrong-coloured squares
does not change (see fig. 21). Afterwards we can do as described previously.

W W

R R W

R R x

−→

W W

R x R

R W R

Figure 22

• If the 2 × 2 square above the two wrong-coloured
squares is entirely right-coloured, but at least one ad-
jacent square to the right of this 2 × 2 area is wrong-
coloured, then we can use double reflection to swap
this wrong-coloured square with one of the right-
coloured squares in the 2 × 2 area (on fig. 22 the
wrong-coloured square is the bottom right square; in the other case the same tran-
sition helps). After that we can proceed as before.

W W

R R R

R R R

−→

W W

R W W

R W W

−→

R R

R W W

R W W

−→

R R

R R R

R R R

Figure 23

• In the rest of the cases we
can reduce the number of
wrong-coloured squares
by 2 using the steps on
fig. 23.

Let us finally look at the situation where there are no two wrong-coloured adjacent
squares. With double refections a wrong-coloured square can be moved along the di-
agonals without changing the number of wrong- or right-coloured squares. Since the
numbers of black and white squares are initially equal and do not change with reflect-
ing, the existence of a wrong-coloured black square implies that there must also exist a
wrong-coloured white square and the other way round. Therefore by taking steps along
the diagonals we can take one wrong-coloured square next to another one and proceed
as described above.

F-15. (Grade 12.) Ats and Pets both thought of two positive integers that do not exceed
some positive integer n. If they both added the numbers they thought of, then both
sums gave the same remainder when divided by n. But if both of them multiplied the
numbers they thought of, then both products also gave equal reminders when divided
by n. Is is necessarily true that the numbers they thought of were the same, if a) n = 99?
b) n = 101?

Answer: a) No; b) Yes.
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Solution: a) If Ats thought of numbers 1 and 21 and Pets of numbers 10 and 12, then both
get the sum 22 and the products will be 21 and 120, respectively, both of which give the
remainder 21 when divided by 99.

b) Let the numbers Ats chose be a and b the ones Pets chose c and d. According to the
conditions stated in the problem the numbers (a + b) − (c + d) and ab − cd are both
divisible by 101. Let (a + b)− (c + d) = 101k; then a = 101k − b + c + d, from where

ab − cd = (101k − b + c + d)b − cd = 101kb − b2 + bc + bd − cd

= 101kb − (c − b)(d − b).

Hence also the product (c − b)(d − b) is divisible by 101. As 101 is a prime number, it
has to divide either the factor c − b or the factor d − b. W.l.o.g., let c − b be divisible by
101. As all the numbers are on the interval from 1 to 101, it means that c = b. But then
(a + b)− (c + d) = a − d, which due to divisibility by 101 means that a = d. Therefore
Ats and Pets must have chosen the same numbers.

Remark: In part a) there are a lot of other possibilities to show that the answer is no; e.g.,
Ats could have chosen 99 and 36 and Pets 33 and 3, or Ats 99 and 20 and Pets 11 and 9.

F-16. (Grade 12.) Find all pairs of real numbers (x, y) that satisfy

{

x + sin x = y,
y + sin y = x.

Answer: (kπ, kπ), where k is any integer.

Solution 1: By adding the equations and simplifying we get sin x = − sin y. Thus y =
−x + 2kπ or y = π + x + 2kπ = x + (2k + 1)π. In the second case we get that |y − x| =
|(2k + 1)π| > π, but from the first equality |y − x| = | sin x| 6 1 < π, a contradiction.
Therefore y = −x + 2kπ, where k is an integer. By plugging this into the first equation
we get 2x + sin x = 2kπ after simplifying. We see that this is satisfied in case of any
integer k by the value x = kπ; then also y = −kπ + 2kπ = kπ. As f (x) = 2x + sin x is
an increasing function, there cannot be any other solutions to 2x + sin x = 2kπ.

Solution 2: Function f (z) = z + sin z is strictly increasing, because its derivative f ′(z) =
1 + cos z is positive everywhere, except for some isolated points. Therefore if x < y in
case of some solution (x, y) to the system of equations, then y = x + sin x < y + sin y =
x, a contradiction. Analogously y < x gives a contradiction. In conclusion x = y is the
only option. By substituting it in we get sin x = sin y = 0, from where x = y = kπ for
any integer k. All pairs (kπ, kπ) indeed satisfy the given system of equations.

F-17. (Grade 12.) Let I be the incenter of triangle ABC. Let RA, RB and RC be the radii
of the circumcircles of triangles BIC, CIA and AIB, respectively, and R be the radius of
the circumcircle of triangle ABC. Prove that RA + RB + RC 6 3R.

Solution: Let |BC| = a, |CA| = b and |AB| = c and the angles opposite to those sides be
α, β and γ, respectively (see fig. 24).

The law of sines in triangles ABC and IBC gives
a

sin α
= 2R and

a

sin
(

β
2 + γ

2

) = 2RA,
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A

B

C

I

β
2

β
2

γ
2

γ
2

α
2
α
2

Figure 24

respectively. As sin

(

β

2
+

γ

2

)

= sin
(

90◦ − α

2

)

= cos
α

2
, we obtain

RA

R
=

sin α

cos α
2

=

2 sin
α

2
. Similarly we get

RB

R
= 2 sin

β

2
and

RC

R
= 2 sin

γ

2
.

To solve the problem we need to prove that
RA

R
+

RB

R
+

RC

R
6 3, or equivalently,

sin
α

2
+ sin

β

2
+ sin

γ

2
6

3

2
. (6)

Applying Jensen’s inequality gives

1

3

(

sin
α

2
+ sin

β

2
+ sin

γ

2

)

6 sin

(

α
2 + β

2 + γ
2

3

)

= sin

(

α + β + γ

6

)

= sin
π

6
=

1

2
,

which directly implies the necessary result.

F-18. (Grade 12.) A positive integer n is written on the board once, then n − 1 is
written on the board twice etc., on every step the number smaller by 1 from the previous
number is written twice as many times as the previous number. When reaching zeros
this process stops. Prove that in the end the sum of the numbers on the board is less

than 2n+1.

Solution: The sum of the numbers on the board is

sn = 1 · n + 2 · (n − 1) + 4 · (n − 2) + . . . + 2n−1 · 1 .

Let us also define

rn =
sn

2n
=

1

2
· 1 +

1

4
· 2 +

1

8
· 3 + . . . +

1

2n
· n .

Notice that rn+1 =
rn

2
+

(

1

2
+

1

4
+ . . . +

1

2n+1

)

for every n > 1, whereby obviously
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1

2
+

1

4
+ . . . +

1

2n+1
<

1

2
+

1

4
+ . . . = 1. Thus rn < 2 always implies rn+1 <

rn

2
+ 1 <

1 + 1 = 2. As r1 =
1

2
< 2, we have rn < 2 for every n > 1. From there we get that

sn = 2n · rn < 2n+1 for every n > 1.

Remark: The problem can be solved also by showing sn = 2n+1 − (n + 2) by induction.

F-19. (Grade 12.) Find all pairs of positive integers (x, y) for which

x(x + 1) = y(y + 1)(y2 + 1).

Answer: (5, 2).

Solution 1: Let us look at the given condition as a quadratic equation w.r.t. x. The

discriminant of that is D = 1 + 4y(y + 1)(y2 + 1) = 4y4 + 4y3 + 4y2 + 4y + 1. If
the solution to this is an integer, then D must be a square of an integer. Notice that

(2y2 + y)2 = 4y4 + 4y3 + y2
< D and (2y2 + y + 1)2 = D + y2 − 2y. Therefore if

y2 − 2y > 0, then D cannot be a square of an integer, because it is between two consec-
utive squares. In case of equality y2 − 2y = 0 we get y = 2 as the only possibility, and

accordingly x =
−1 +

√
D

2
=

−1 + (2y2 + y + 1)

2
= 5. The case y2 − 2y < 0 gives y = 1

as the only possibility, in which case x is not an integer.

Solution 2: The equation in the problem statement is equivalent to

x(x + 1) = (y2 + y)(y2 + 1). (7)

If x 6 y2, then x(x + 1) 6 y2(y2 + 1) < (y2 + y)(y2 + 1), due to which the equality (7)
cannot hold. If x > y2 + y, then x(x + 1) > (y2 + y)(y2 + y + 1) > (y2 + y)(y2 + 1) and
the equality (7) cannot hold either. Therefore x = y2 + a, where 0 < a < y. By making
this substitution in the equation (7), we get (y2 + a)(y2 + a + 1) = (y2 + y)(y2 + 1),
which after expanding and simplifying gives 2ay2 + a2 + a = y3 + y. This is equivalent
to

2a(y2 + 1) + a2 − a = y(y2 + 1), (8)

from which we get that y2 + 1 is a divisor of a2 − a. But at the same time a2 − a < a2
<

y2
< y2 + 1, thus a2 − a = 0, giving a = 1 as the only possibility. By substituting it into

(8), we get 2(y2 + 1) = y(y2 + 1) and y = 2. From here also x = 5.

IMO Team Selection Contest

First day

S-1. In Wonderland, the government of each country consists of exactly a men and
b women, where a and b are fixed natural numbers and b > 1. For improving of rela-
tionships between countries, all possible working groups consisting of exactly one gov-
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ernment member from each country, at least n among whom are women, are formed
(where n is a fixed non-negative integer). The same person may belong to many work-
ing groups. Find all possibilities how many countries can be in Wonderland, given that
the number of all working groups is prime.

Answer: 1.

Solution: Let r be the number of countries in Wonderland. If the minimal number of
women in working groups is n = 0 then forming a working group means just choosing
one government member from each country. Thus there are (a + b)r different working
groups. This number can be prime only if r = 1 because a + b > b > 1.

If the minimal number of women in working groups is n > 1 then a working group
containg exactly k women (n 6 k 6 r) can be formed as follows. Choose k countries out
of r, that send a woman to that particular working group, then choose one woman out
of b from each of the k governments, and finally choose one man out of a from each of

the remaining r − k countries. Hence there are

(

r

k

)

bkar−k working groups with exactly

k women, and
r

∑
k=n

(

r

k

)

bkar−k working groups with at least n women altogether. As

n > 1, all terms of this sum are divisible by b, whence the sum can be a prime only if it
is equal to b. This is possible only if r = 1 since otherwise the last term (corresponding
to k = r) of the sum would be greater than b.

The value r = 1 is indeed possible: if, for instance, each government consists of just 2
women then the number of all “working groups” is 2 which is a prime.

Remark: One can easily avoid referring to binomial coefficients. Let f (x, y) the number
of possibilities of choosing exactly one government member from x countries in such a
way that the obtained set contained at least y women. We show by induction on x that
b | f (x, y) whenever y > 1. If x = 0 then y > x, whence a set of x persons can not
contain y women. Hence f (x, y) = 0 which is divisible by b. Assuming the claim for x
countries, consider some x + 1 countries; let one of them be “special”. All possibilities
of choosing one government member from each country so that at least y of them were
women can be divided to two groups: those with a woman from the “special” country,
and those with a man from the “special” country. There are at least y− 1 women chosen
from the remaining x countries in the first case and at least y women in the second case.
Thus f (x + 1, y) = b · f (x, y − 1) + a · f (x, y). By the induction hypothesis, f (x, y) is
divisible by b, so is f (x + 1, y).

S-2. Let a, b and c be positive real numbers for which a + b + c = 1. Prove that

a2

b3 + c4 + 1
+

b2

c3 + a4 + 1
+

c2

a3 + b4 + 1
>

1

5
.

Solution 1: We have a, b, c ∈ (0, 1). Therefore b3
< b and c4

< c, from where b3 + c4 + 1 <

b + c + 1 = 1 − a + 1 = 2 − a, whence

a2

b3 + c4 + 1
>

a2

2 − a
= −2 − a +

4

2 − a
.
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Analogously
b2

c3 + a4 + 1
> −2 − b +

4

2 − b
and

c2

a3 + b4 + 1
> −2 − c +

4

2 − c
. By

adding these three inequalities we get

a2

b3 + c4 + 1
+

b2

c3 + a4 + 1
+

c2

a3 + b4 + 1
>

> −6 − (a + b + c) +

(

4

2 − a
+

4

2 − b
+

4

2 − c

)

=

= −7 + 4 ·
(

1

2 − a
+

1

2 − b
+

1

2 − c

)

.

As the numbers 2 − a, 2 − b and 2 − c are positive, the AM-HM inequality yields that

1

2 − a
+

1

2 − b
+

1

2 − c
> 3 · 3

(2 − a) + (2 − b) + (2 − c)
=

9

6 − (a + b + c)
=

9

5
.

In conclusion

a2

b3 + c4 + 1
+

b2

c3 + a4 + 1
+

c2

a3 + b4 + 1
> −7 + 4 ·

(

1

2 − a
+

1

2 − b
+

1

2 − c

)

> −7 + 4 · 9

5
=

1

5
.

Solution 2: By applying Cauchy-Schwarz inequality to vectors (x, y, z) and

(

a

x
,

b

y
,

c

z

)

,

where x =
√

b3 + c4 + 1, y =
√

c3 + a4 + 1 and z =
√

a3 + b4 + 1, we get

(x2 + y2 + z2) ·
(

a2

x2
+

b2

y2
+

c2

z2

)

> (a + b + c)2 = 1.

Since a, b, c ∈ (0, 1), we obtain

x2 + y2 + z2 = (b3 + c4 + 1) + (c3 + a4 + 1) + (a3 + b4 + 1)

= 3 + (a3 + b3 + c3) + (a4 + b4 + c4)

< 3 + (a + b + c) + (a + b + c) = 5.

In conclusion
a2

x2
+

b2

y2
+

c2

z2
>

1

5
, QED.

Solution 3: If c >
1

2
, then due to the premise a + b + c = 1, numbers a and b are in the

interval (0, 1
2 ]. Therefore 1 + a3 + b4 6 1 +

(

1

2

)3

+

(

1

2

)4

=
19

16
<

5

4
and

a2

b3 + c4 + 1
+

b2

c3 + a4 + 1
+

c2

a3 + b4 + 1
>

c2

a3 + b4 + 1
>

4

5
c2 >

4

5
· 1

4
=

1

5
.

Analogously we show the necessary inequality for cases a >
1

2
and b >

1

2
. But if all the
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1

1
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α

β

γ

1

1

1

Figure 26

1

1

1

Figure 27

numbers a, b, c are less than
1

2
, then analogously to the previous cases the denominator

of every fraction is less than
19

16
. Using AM-QM, we get

a2

b3 + c4 + 1
+

b2

c3 + a4 + 1
+

c2

a3 + b4 + 1
>

16

19
· (a2 + b2 + c2) >

16

19
· (a + b + c)2

3

=
16

19 · 3
>

1

5
.

S-3. Three line segments, all of length 1, form a connected figure in the plane. Any
two different line segments can intersect only at their endpoints. Find the maximum
area of the convex hull of the figure.

Answer:
3

4

√
3.

Solution: Clearly all vertices of the convex hull are some endpoints of the line segments.
As the figure is connected, there are at most 4 different locations of the endpoints of line
segments and the convex hull is either a quadrilateral or a triangle. We can assume that
there are exactly 4 different locations of the endpoints of the line segments, as having
only 3 meeting points would imply that the convex hull is an equilateral triangle with

side length 1 whose area S =
1

4

√
3 is clearly not maximal (see fig. 25).

Therefore, if the convex hull is a triangle then one of the endpoints of the line segments
lies inside the triangle. We have the following three cases:

• If all line segments meet inside the triangle then the convex hull consists of three
triangles, each of which has two side lengths equal to 1 (see fig. 26). Let the angles
between the line segments be α, β, γ. As α, β, γ are all less than 180◦, we obtain

S =
1

2
(sin α + sin β + sin γ) 6

3

2
sin

α + β + γ

3
=

3

2
sin 120◦ =

3

4

√
3

by Jensen’s inequality. The bound
3

4

√
3 is achieved when all angles between the

line segments are 120◦.

• If exactly two lines meet inside the triangle then the convex hull is a triangle with
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11

1

Figure 28

1

1

1

Figure 29

1

1

1

Figure 30

one side length equal to 1 and one more side length less than 2 by triangle inequality

(see fig. 27). Hence S <
1

2
· 2 = 1 <

3

4

√
3.

• If exactly one line segment ends inside the triangle then the triangle has two sides

of length 1 (see fig. 28), whence S 6
1

2
<

3

4

√
3.

If the convex hull is a quadrilateral then all line segments end at some vertex of the
quadrilateral. We have the following cases:

• If a line segment coincides with a diagonal of the quadrilateral then other two line
segments must coincide with sides of the quadrilateral (see fig. 29 and 30). So the
convex hull consists of two triangles which both have two sides of length 1. Hence

S 6 2 · 1

2
= 1 <

3

4

√
3.

• If no line segment coincides with any diagonal then the line segments form 3 con-
secutive sides of the convex hull. Let the broken line formed by the line segments
be ABCD. Consider two subcases:

– If ∠ABC + ∠BCD 6 180◦ (see fig. 31) then, assuming w.l.o.g. that ∠ABC >

∠BCD, point D lies either inside or on the boundary of the rhomboid ABCB′

with side length 1. Hence S 6 1 <
3

4

√
3.

– If ∠ABC + ∠BCD > 180◦ then rays AB and DC meet at some point E (see

fig. 32). Let β = ∠EBC, γ = ∠BCE and α = ∠CEB. Then |EB| = sin γ

sin α
and

|EC| = sin β

sin α
by the law of sines in triangle EBC, and we obtain

S =
1

2
(|EA| · |ED| − |EB| · |EC|) sin α =

1

2
(|EB|+ |EC|+ 1) sin α

=
1

2
(sin α + sin β + sin γ) 6

3

2
sin

α + β + γ

3
=

3

2
sin 60◦ =

3

4

√
3

by Jensen’s inequality.

Consequently, the maximum area of the convex hull is
3

4

√
3.

Remark: It is possible to avoid using Jensen’s inequality.
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• Consider the case depicted in fig. 26. Let D be the common endpoint of three unit
segments and let the other endpoints be A, B and C so that ∠BDC = α, ∠CDA = β
and ∠ADB = γ. Suppose that α, β and γ are not equal; w.l.o.g., β 6= γ. Take a point
A′ on the perpendicular bisector of line segment BC on the same half plane as A
from line BC in such a way that |DA′| = 1 (see fig. 33). As point D also lies on the
perpendicular bisector of line segment BC, ∠CDA′ = ∠A′DB and A′ lies farther
away than A from BC. Consequently, interchanging DA and DA′ the area of the
convex hull increases. Hence the area is maximal in the case α = β = γ. This area

is S = 3 · 1

2
sin 120◦ =

3
√

3

4
.

• Consider the case depicted in fig. 32. Let B′ and C′ be the points symmetrical to B
and C, respectively, from line AD (see fig. 34). The area of quadrilateral ABCD is
half of the area of the hexagon ABCDC′B′. Note that all sides of ABCDC′B′ have
length 1, thus the perimeter is always 6. Amongst polygons with fixed perimeter,
the regular one has maximal area. Thus the area of quadrilateral ABCD is maximal

if the hexagon ABCDC′B′ is regular. This area is S =
1

2
· 6 · 1

2
sin 60◦ =

3
√

3

4
.

Second day

S-4. In an acute triangle the feet of altitudes drawn from vertices A and B are D and
E, respectively. Let M be the midpoint of side AB. Line CM intersects the circumcircle
of CDE again in point P and the circumcircle of CAB again in point Q. Prove that
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|MP| = |MQ|.

A B

C

D

E

M

P

Q

H

Figure 35

Solution 1. The orthocenter H of
the triangle ABC is located on the
circumcircle of the triangle CDE,
because ∠HDC +∠HEC = 90◦ +
90◦ = 180◦ (see fig. 35). Let α =
∠BAC; then also ∠CHE = 90◦ −
∠ECH = α. Therefore ∠MPE =
180◦ − ∠CPE = 180◦ − ∠CHE =
180◦ − α, from which we get that
points A, M, P, E are concyclic.
Analogously we see that points B,
M, P, D are concyclic.

Point M is the circumcenter of
the right triangle ABE. Therefore
|ME| = |MA| and ∠MEA = α,
due to which also ∠MPA = α.
But since ∠MQB = ∠CQB =
∠CAB = α, we must have AP ‖
BQ. Analogously BP ‖ AQ.

In conclusion we get that APBQ is
a parallelogram with diagonals AB and PQ. As the diagonals of a parallelogram divide
each other in half, the desired claim follows.

Solution 2. Similarly to the previous solution we show that points A, M, P, E are located
on one circle. Let ~u ·~v be the dot product of vectors ~u and ~v. Then

−→
AC · −→BC =

−→
AC · −→EC =

−→
MC · −→PC =

−→
MC ·

(−→
MC −−→

MP
)

=
−→
MC · −→MC −−→

MC · −→MP.

On the other hand,

−→
AC · −→BC =

(−→
MC −−−→

MA
)

·
(−→

MC −−→
MB

)

=

=
−→
MC · −→MC −−→

MC · −→MB −−−→
MA · −→MC +

−−→
MA · −→MB =

=
−→
MC · −→MC −−→

MC ·
(−−→

MA +
−→
MB

)

+
−−→
MA · −→MB.

In conclusion
−→
MC · −→MP =

−→
MC ·

(−−→
MA +

−→
MB

)

− −−→
MA · −→MB. But as M is the midpoint

of AB, we have
−−→
MA +

−→
MB = ~0, and due to choice of Q, we also have

−−→
MA · −→MB =−→

MC · −−→MQ. Therefore
−→
MC · −→MP = −−→

MC · −−→MQ, meaning that

−→
MC ·

(−→
MP +

−−→
MQ

)

= 0.

As
−→
MP,

−−→
MQ and

−→
MC have the same direction, the equality is true only if

−→
MP+

−−→
MQ =~0.

Therefore |MP| = |MQ|.
Remark. A train of thought similar to solution 2 shows that there are exactly two possi-
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bilities for choosing point M on side AB such that |MP| = |MQ| would hold: CM must
either be the median or altitude of ABC. Indeed, proof that A, M, P, E are on one cir-
cle does not use the premise that M is the midpoint of AB, therefore everything before

applying
−−→
MA +

−→
MB = ~0 holds true for any M on the side AB. Without substituting−−→

MA +
−→
MB with the zero vector we eventually get

−→
MC ·

(

(
−−→
MA +

−→
MB)− (

−→
MP +

−−→
MQ)

)

= 0.

From here
−→
MC ⊥ (

−−→
MA +

−→
MB)− (

−→
MP +

−−→
MQ). Now

|MP| = |MQ| ⇐⇒ −→
MP +

−−→
MQ =~0 ⇐⇒ −→

MC ⊥ −−→
MA +

−→
MB.

As
−−→
MA +

−→
MB has the same direction as AB, this orthogonal setup can only hold if−−→

MA +
−→
MB =~0 or if MC and AB are orthogonal. Correspondingly, CM is the median or

the altitude of triangle ABC.

S-5. In Wonderland there are at least 5 towns. Some towns are connected directly by
roads or railways. Every town is connected to at least one other town and for any four
towns there exists some direct connection between at least three pairs of towns among
those four. When entering the public transportation network of this land, the traveller
must insert one gold coin into a machine, which lets him use a direct connection to go
to the next town. But if the traveller continues travelling from some town with the same
method of transportation that took him there, and he has paid a gold coin to get to this
town, then going to the next town does not cost anything, but instead the traveller gains
the coin he last used back. In other cases he must pay just like when starting travelling.
Prove that it is possible to get from any town to any other town by using at most 2 gold
coins.

Solution 1. Let A and B be any two towns. We know that it must be possible to move
from A to some other town X and from B to some other town Y. From four towns A,
B, X, Y we can form three pairs which all have a direct connection between them. Of
those at least one way goes from either A or X to either B or Y. Therefore it is possible
to travel from A to B.

Look at some possible way of getting from A to B; let C be the first town after town A
on this way and D be the last town before town B (see fig. 36). Assume that A, C, D,
B are all distinct, because otherwise the problem statement follows trivially. Because
of the same reason assume that there does not exist a direct connection between A and
B, A and D or C and B. As according to the problem statement we can get three pairs
from those four that all have direct connection between them, a direct connection must
be between C and D.

Let E be some town that is not A, B, C or D. If there is a direct connection between E
and A and also between E and B, then the problem statement holds. Therefore let us
assume in the following that there is no direct connection between either E and A or
E and B. From A, C, E and B we can form three pairs that have a direct connection
between them. As there is a maximum of one direct connection between E, A and B and
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there is no direct connection between B and C, then there must be one between E and
C. By switching the roles of A and B and also C and D we get analogously that there is
a direct connection between E and D (see fig. 37).

If the connections between A and C, and D and B, are of different kind, then on the
path A → C → D → B there must be at least two consecutive steps with same mode of
transportation. For this path the problem statement holds. But if connections between
A and C, and D and B, are of the same kind, then there must exist two consecutive steps
with the same mode of transportation on the path A → C → E → D → B. For this the
problem statement also holds.

Solution 2. Let A and B be any two towns. Suppose that there is no direct connection
between them, because otherwise the problem statement holds trivially.

Let X be any town distinct from A and B. If there is no direct connection between A and
X and no direct connection between B and X, then from a fourth town Y there must be
a direct connection to A, B and X (see fig. 38). In that case one can go from A to B via
Y and the problem statement holds. Because of that suppose in the following that from
any town X distinct from A and B there is a direct connection to either A or B.

Let X and Y be any two distinct towns that are not A or B. Suppose that there is no
direct connection between X and Y. As there is also no direct connection between A
and B, but from A, B, X and Y we can form three pairs that have a direct connection
between them, it is possible to go from A to B via X or Y, in which case the problem
statement holds. Now the only case to look at is the one where between any two towns
that are not A and B there is a direct connection.

As there are at least 5 towns in the country, there are at least 3 towns other than A and
B. Therefore either A or B must have a direct connection to at least two other towns.
Without loss of generality assume that A has a direct connection to C and D. But B
also has a direct connection to some town E; if E coincides with any of the previously
mentioned ones then the problem statement holds, which leaves us to look at the case
where E is a new town. Previously mentioned facts give us that C, D and E all have
direct connections between them.
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If now either A and C or A and D have a direct connection between them of different
kind than what is between B and E, then either path A → C → E → B or A → D →
E → B has two consecutive steps with same mode of transportation. For this path the
problem statement holds. But if the connection between A and C or A and D is of the
same kind as the connection between B and E, then either on the path A → C → D →
E → B or A → D → C → E → B there are two consecutive steps with same mode of
transportation. For this also the problem statement holds.

S-6. Find all natural numbers n such that the equation x2 + y2 + z2 = nxyz has
solutions in positive integers.

Answer: 1 and 3.

Solution: For n = 1 one of the solutions is x = y = z = 3 and for n = 3 one of the
solutions is x = y = z = 1.

If n is even and there exists an integer solution, then the r.h.s. of the equation is even.
This is possible only if at least one of the numbers x, y, z is even. Then the r.h.s. is
divisible by 4. Since the remainders modulo 4 of the squares of integers can only be 0
or 1, all numbers x, y, z must be even. Let x = 2a, y = 2b, z = 2c. Then a2 + b2 + c2 =
2nabc, hence (a, b, c) satisfy a similar equation with doubled n, so they must be even.
Continuing this process reveals that x, y, z must be divisible by arbitrarily large power
of 2 which is impossible. Consequently, there are no solutions for even n.

Suppose that for some odd n > 3 the equation has an integer solution (x, y, z). The
given equation is equivalent to z2 − nxy · z + (x2 + y2) = 0; let z′ be the other root
of this quadratic equation. Then z′ > 0 since positive nxy and x2 + y2 enable only
positive solutions of the quadratic equation. By Viéte’s formulae, z′ = nxy − z. On
the other hand, assume w.l.o.g. that z = max(x, y, z); then x2 6 xz 6 xyz and y2 6

yz 6 xyz, whence z2 > (n − 2)xyz and z > (n − 2)xy. Therefore z′ 6 2xy < (n −
2)xy 6 z, implying x + y + z′ < x + y + z. Thus we can infinitely reduce the sum of the
components of the solution, which is impossible.

Remark. Using the transformation (x, y, z) → (y, z, nyz − x), it is easy to show that in
cases n = 1 and n = 3 the given equation has infinitely many solutions.
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