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Problems

Each problem is worth seven points. 

Problem 1

Let ABC  be an acute-angled triangle with circumcentre O . Let P  on BC  be the foot of the altitude from A . 

Suppose that �BCA � �ABC � 30� . 

Prove that �CAB � �COP � 90� .  

Problem 2

Prove that 

a
�������������������������������������������������������

a2 � 8�b�c
�

b
�������������������������������������������������������

b2 � 8�c�a
�

c
�������������������������������������������������������

c2 � 8�a�b
� 1

for all positive real numbers a, b  and c . 

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest. 

•  Each contestant solved at most six problems. 
•  For each girl and each boy, at least one problem was solved by both of them. 

Prove that there was a problem that was solved by at least three girls and at least three boys. 

Problem 4

Let n  be an odd integer greater than 1, and let k1 , k2 , …, kn  be given integers. For each of the n�  permutations 
a � �a1 , a2 , …, an �  of 1, 2, …, n , let 

S��a� ��
i�1

n

ki �ai .

Prove that there are two permutations b  and c , b 	 c , such that n �  is a divisor of S�b�
 S�c� . 
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Problem 5

In a triangle ABC , let AP  bisect �BAC , with P  on BC , and let BQ  bisect �ABC , with Q  on CA . 

It is known that �BAC � 60�  and that AB � BP � AQ � QB . 

What are the possible angles of triangle ABC? 

Problem 6

Let a, b, c, d  be integers with a � b � c � d � 0. Suppose that 

a�c � b�d � �b � d � a 
 c���b � d 
 a � c�.
Prove that a�b � c�d  is not prime. 
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Problems with Solutions

Problem 1

Let ABC  be an acute-angled triangle with circumcentre O . Let P  on BC  be the foot of the altitude from A . 

Suppose that �BCA � �ABC � 30� . 

Prove that �CAB � �COP � 90� .  

Solution

� Solution 1

Let Α � �CAB , Β � �ABC , Γ � �BCA , and ∆ � �COP . Let K  and Q  be the reflections of A  and P , respectively, 
across the perpendicular bisector of BC . Let R  denote the circumradius of �ABC . Then OA � OB � OC � OK � R . 
Furthermore, we have QP � KA  because KQPA  is a rectangle. Now note that 
�AOK � �AOB 
 �KOB � �AOB 
 �AOC � 2Γ 
 2Β � 60� . 

It follows from this and from OA � OK � R  that KA � R  and QP � R . Therefore, using the Triangle Inequality, we 
have OP � R � OQ � OC � QC � QP � PC � R � PC . It follows that OP � PC , and hence in �COP , �PCO � ∆ . 
Now since Α � 1����2 �BOC � 1����2 �180� 
 2�PCO� � 90� 
 �PCO , it indeed follows that Α � ∆ � 90� . 

� Solution 2

As in the previous solution, it is enough to show that OP � PC . To this end, recall that by the (Extended) Law of 
Sines, AB � 2RsinΓ  and AC � 2RsinΒ . Therefore, we have 

BP 
 PC � ABcosΒ 
 A�C�cos�Γ � 2�R�sin�Γ�cos� Β 
 sin� Β�cos�Γ� � 2�R�sin�Γ 
 Β�.
It follows from this and from 

30� � Γ 
 Β � Γ � 90�

that BP 
 PC � R . Therefore, we obtain that R � OP � BO � OP � BP � R � PC , from which OP � OC , as desired. 
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� Solution 3

We first show that R2 � CP � CB . To this end, since CB � 2RsinΑ  and CP � ACcosΓ � 2RsinΒcosΓ , it suffices to 
show that 1����4 � sinΑsinΒcosΓ . We note that 1 � sinΑ � sin�Γ � Β� � sinΓcosΒ � sinΒcosΓ  and 
1����2 � sin�Γ 
 Β� � sinΓcos Β 
 sin ΒcosΓ  since 30� � Γ 
 Β � 90� . It follows that 1����4 � sinΒcosΓ  and that 
1����4 � sinΑsinΒcosΓ . 

Now we choose a point J  on BC  so that CJ � CP � R2 . It follows from this and from R2 � CP � CB  that CJ � CB , so 
that �OBC � �OJC . Since OC �CJ � PC �CO  and �JCO � �OCP , we have �JCO � �OCP  and �OJC � �POC � ∆ . 
It follows that ∆ � �OBC � 90� 
 Α  or Α � ∆ � 90� . 

� Solution 4

On the one hand, as in the third solution, we have R2 � CP � CB . On the other hand, the power of P  with respect to 
the circumcircle of �ABC  is BP � PC � R2 
 OP2 . From these two equations we find that 

OP2 � R2 
 BP � PC � PC � CB 
 BP � PC � PC2,

from which OP � PC . Therefore, as in the first solution, we conclude that Α � ∆ � 90� . 

Problem 2

Prove that 

a
�������������������������������������������������������

a2 � 8�b�c
�

b
�������������������������������������������������������

b2 � 8�c�a
�

c
�������������������������������������������������������

c2 � 8�a�b
� 1

for all positive real numbers a, b  and c . 

Solution

First we shall prove that 

a
�������������������������������������������������������

a2 � 8�b�c
�

a
4����3

�����������������������������������������
a

4����3 � b
4����3 � c

4����3

,

or equivalently, that 

�a 4����3 � b
4����3 � c

4����3 �2 � a
2����3 �a2 � 8�b�c�.

The AM-GM inequality yields 

�a 4����3 � b
4����3 � c

4����3 �2 
 �a 4����3 �2  �  �b 4����3 � c
4����3 ���a 4����3 � a

4����3 � b
4����3 � c

4����3 �  
�  2�b

2����3 �c
2����3 � 4�a

2����3 �b
1����3 �c

1����3  

�  8�a
2����3 �b�c.

Thus 
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�a 4����3 � b
4����3 � c

4����3 �2  �  �a 4����3 �2 � 8�a
2����3 �b�c  

�  a
2����3 �a2 � 8�b�c�,  

so 

a
�������������������������������������������������������

a2 � 8�b�c
�

a
4����3

������������������������������������������
a

4����3 � b
4����3 � c

4����3 .

Similarly, we have 

b�������������������������������������������
b2 �8�c�a

 � b
4�����3���������������������������

a
4�����3 �b

4�����3 �c
4�����3

   and

c�������������������������������������������
c2 �8�a�b

 � c
4�����3���������������������������

a
4�����3 �b

4�����3 �c
4�����3

.  

Adding these three inequalities yields 

a
�������������������������������������������������������

a2 � 8�b�c
�

b
�������������������������������������������������������

b2 � 8�c�a
�

c
�������������������������������������������������������

c2 � 8�a�b
� 1.

Comment. It can be shown that for any a, b, c � 0 and Λ � 8, the following inequality holds: 

a
�������������������������������������������������������

a2 � Λ�b�c
�

b
�������������������������������������������������������

b2 � Λ�c�a
�

c
�������������������������������������������������������

c2 � Λ�a�b
�

3
�������������������������������������

1 � Λ .

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest. 

•  Each contestant solved at most six problems. 
•  For each girl and each boy, at least one problem was solved by both of them. 

Prove that there was a problem that was solved by at least three girls and at least three boys. 

Solution

� Solution 1

We introduce the following symbols: G  is the set of girls at the competition and B  is the set of boys, P  is the set of 
problems, P�g�  is the set of problems solved by g � G , and P�b�  is the set of problems solved by b � B . Finally, G�p�  
is the set of girls that solve p � P  and B�p�  is the set of boys that solve p . In terms of this notation, we have that for 
all g � G  and b � B , 

�a� 	 P�g� 	 � 6�, 	 P�b� 	 � 6�, ��b� P�g� 
 P�b� 	 �.

We wish to prove that some p � P  satisfies 	 G�p� 	 � 3 and 	 B�p� 	 � 3. To do this, we shall assume the contrary 
and reach a contradiction by counting (two ways) all ordered triples �p, q, r�  such that p � P�g� 
 P�b� . With 
T � ��p, g, b�� : �p � P�g� 
 P�b�� , condition (b) yields 
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(1)	 T 	 ��
g�G

�
b�B

	 P��g� 
 P��b� 	 � 	 G 	 � 	 B 	 � 212 .

Assume that no p � P  satisfies 	 G�p� 	 � 3 and 	 B�p� 	 � 3. We begin by noting that 

(2)�
p�P

	 G��p� 	 ��
g�G

	 P��g� 	 � 6 	 G� 	 �and �
p�P

	 B��p� 	 � 6 	 B 	 .

(Note. The equality in (2) is obtained by a standard double-counting technique: Let Χ�g, p� � 1 if g  solves p  and 
Χ�g, p� � 0 otherwise, and interchange the orders of summation in 
p�P 
g�G Χ��g, p� .) Let 

P� � �p � P� : 	 G�p� 	 � 3�,
P
 � �p � P� : 	 G�p� 	 � 2�.

Claim. 
p�P

	 G��p� 	 � 	 G 	 ; thus 
p�P�

	 G��p� 	 � 5 	 G 	 . Also 
p�P�
	 B��p� 	 � 	 B 	 ; thus 


p�P

	 B�p� 	 � 5 	 B 	 . 

Proof. Let g � G  be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply that g  solves some problem 
p  that is solved by at least �21 �6� � 4 boys. By assumption, 	 B�p� 	 � 4 implies that p � P
 , so every girl solves at 
least one problem in P
 . Thus 

(3)�
p�P


	 G��p� 	 � 	 G 	 .

In view of (2) and (3) we have 

�
p�P�

	 G��p� 	 ��
p�P

	 G��p� 	 
�
p�P


	 G��p� 	 � 5 	 G 	 .

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a problem p � P� . Thus 

p�P�

	 B��p� 	 � 	 B 	 , and the calculation proceeds as before using (2). �  

Using the claim just established, we find 

	 T 	 � 
p�P 	 G��p� 	 � 	 B��p� 	 
� 
p�P�

	 G��p� 	 � 	 B��p� 	 �
p�P

	 G��p� 	 � 	 B��p� 	 

� 2�
p�P�
	 G��p� 	 �2�
p�P


	 B��p� 	  
� 10 	 G 	 �10 	 B 	 � 20 � 21.

This contradicts (1), so the proof is complete. 
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� Solution 2

Let us use some of the notation given in the first solution. Suppose that for every p � P  either 	 G�p� 	 � 2 or 
	 B�p� 	 � 2. For each p � P , color p  red if 	 G�p� 	 � 2 and otherwise color it black. In this way, if p  is red then 
	 G�p� 	 � 2 and if p  is black then 	 B�p� 	 � 2. Consider a chessboard with 21 rows, each representing one of the 

girls, and 21 columns, each representing one of the boys. For each g � G  and b � B , color the square corresponding 
to �g, b�  as follows: pick p � P�g� 
 P�b�  and assign p 's color to that square. (By condition (b), there is always an 
available choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least �441 �2� � 221 squares, 
and thus some row has at least �221 �21� � 11  black squares or some column has at least 11 red squares. 

Suppose the row corresponding to g � G  has at least 11 black squares. Then for each of 11 squares, the black prob-
lem that was chosen in assigning the color was solved by at most 2 boys. Thus we account for at least �11 �2� � 6 
distinct problems solved by g . In view of condition (a), g  solves only these problems. But then at most 12 boys solve 
a problem also solved by g , in violation of condition (b). 

In exactly the same way, a contradiction is reached if we suppose that some column has at least 11 red squares. 
Hence some p � P  satisfies 	 G�p� 	 � 3 and 	 B�p� 	 � 3. 

Problem 4

Let n  be an odd integer greater than 1, and let k1 , k2 , …, kn  be given integers. For each of the n�  permutations 
a � �a1 , a2 , …, an �  of 1, 2, …, n , let 

S��a� ��
i�1

n

ki �ai .

Prove that there are two permutations b  and c , b 	 c , such that n �  is a divisor of S�b�
 S�c� . 

Solution

Let 
S�a�  be the sum of S�a�  over all n �  permutations a � �a1 , a2 , …, an � . We compute  
 S�a�mod n �  two ways, 
one of which depends on the desired conclusion being false, and reach a contradiction when n  is odd. 

First way. In 
 S�a� , k1  is multiplied by each i � �1, …, n�  a total of �n 
 1��  times, once for each permutation of 
�1, …, n�  in which a1 � i . Thus the coefficient of k1  in 
S�a�  is 

�n 
 1����1 � 2 �� � n� � �n � 1� � � 2.

The same is true for all ki , so 

(1)�S�a� �
�n � 1��
������������������������

2
��

i�1

n

ki .

Second way. If n �  is not a divisor of S�b� 
 S�c�  for any b 	 c , then each S�a�  must have a different remainder mod 
n � . Since there are n�  permutations, these remainders must be precisely the numbers 0, 1, 2, …, n � 
 1. Thus 

(2)�S�a� �
�n � 
 1��n�
���������������������������������

2
�mod n �.

Combining (1) and (2), we get 

(3)
�n � 1��
������������������������

2
��

i�1

n

ki �
�n� 
 1��n�
���������������������������������

2
�mod n �.
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Now, for n  odd, the left side of (3) is congruent to 0 modulo n � , while for n � 1 the right side is not congruent to 0 
(n � 
 1 is odd). For n � 1 and odd, we have a contradiction. 

Problem 5

In a triangle ABC , let AP  bisect �BAC , with P  on BC , and let BQ  bisect �ABC , with Q  on CA . 

It is known that �BAC � 60�  and that AB � BP � AQ � QB . 

What are the possible angles of triangle ABC? 

Solution

Denote the angles of ABC  by Α � 60� , Β , and Γ . Extend AB  to P�  so that BP� � BP , and construct P��  on AQ  so that 
AP�� � AP� . Then BP� P  is an isosceles triangle with base angle Β � 2. Since 
AQ � QP�� � AB � BP� � AB � BP � AQ � QB , it follows that QP�� � QB . Since AP� P��  is equilateral and AP  bisects 
the angle at A , we have PP� � PP�� . 

Claim. Points B, P, P��  are collinear, so P��  coincides with C . 

Proof. Suppose to the contrary that BPP��  is a nondegenerate triangle. We have that 
�PBQ � �PP� B � �PP�� Q � Β �2. Thus the diagram appears as below, or else with P  is on the other side of BP�� . In 
either case, the assumption that BPP��  is nondegenerate leads to BP � PP�� � PP� , thus to the conclusion that BPP�  
is equilateral, and finally to the absurdity Β �2 � 60�  so Α � Β � 60� � 120� � 180� . 
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Thus points B, P, P��  are collinear, and P�� � C  as claimed.�  

Since triangle BCQ  is isosceles, we have 120� 
 Β � Γ � Β � 2, so Β � 80�  and Γ � 40� . Thus ABC  is a 60-80-40 
degree triangle. 

Problem 6

Let a, b, c, d  be integers with a � b � c � d � 0. Suppose that 

a�c � b�d � �b � d � a 
 c���b � d 
 a � c�.
Prove that a�b � c�d  is not prime. 

Solution

� Solution 1

Suppose to the contrary that a�b � c�d  is prime. Note that 

a�b � c�d � �a � d��c � �b 
 c��a � m � gcd��a � d, b 
 c�
for some positive integer m . By assumption, either m � 1 or gcd�a � d, b 
 c� � 1. We consider these alternatives in 
turn. 

Case (i): m � 1. Then 

gcd�a � d, b 
 c� �  a�b � c�d � a�b � c�d 
 �a 
 b � c � d�  
�  �a � d���c 
 1� � �b 
 c���a � 1� 
�  gcd�a � d, b 
 c�,

which is false. 

Case (ii): gcd�a � d, b 
 c� � 1. Substituting a�c � b�d � �a � d��b 
 �b 
 c��a  for the left-hand side of 
a�c � b�d � �b � d � a 
 c���b � d 
 a � c� , we obtain 

�a � d���a 
 c 
 d� � �b 
 c���b � c � d�.

IMO 2001 Competition Problems 9

http://imo.wolfram.com/



In view of this, there exists a positive integer k  such that 

a 
 c 
 d  �  k�b 
 c�,  
b � c � d  �  k�a � d�.

Adding these equations, we obtain a � b � k�a � b 
 c � d�  and thus k�c 
 d� � �k 
 1���a � b� . Recall that 
a � b � c � d . If k � 1 then c � d , a contradiction. If k � 2 then 

2 �
k

���������������
k 
 1

�
a � b
����������������
c 
 d

� 2,

a contradiction. 

Since a contradiction is reached in both (i) and (ii), a�b � c�d  is not prime. 

� Solution 2

The equality a�c � b�d � �b � d � a 
 c���b � d 
 a � c�  is equivalent to 

(1)a2 
 a�c � c2 � b2 � b�d � d2 .

Let ABCD  be the quadrilateral with AB � a , BC � d , CD � b , AD � c , �BAD � 60� , and �BCD � 120� . Such a 
quadrilateral exists in view of (1) and the Law of Cosines; the common value in (1) is BD2 . Let �ABC � Α , so that 
�CDA � 180� 
 Α . Applying the Law of Cosines to triangles ABC  and ACD  gives 

a2 � d2 
 2�a�d�cos�Α � A�C2 � b2 � c2 � 2�b�c�cos�Α.

Hence 2�cos�Α � �a2 � d2 
 b2 
 c2 � � �a�d � b�c� , and 

A�C2 � a2 � d2 
 a�d �
a2 � d2 
 b2 
 c2

�������������������������������������������������
a�d � b�c

�
�a�b � c�d���a�c � b�d�
����������������������������������������������������������

a�d � b�c.

Because ABCD  is cyclic, Ptolemy's Theorem gives 

�A�C � B�D�2 � �a�b � c�d�2

It follows that 

(2)�a�c � b�d���a2 
 a�c � c2 � � �a�b � c�d���a�d � b�c�.
(Note. Straightforward algebra can also be used obtain (2) from (1).) Next observe that 

(3)a�b � c�d � a�c � b�d � a�d � b�c.

The first inequality follows from �a 
 d���b 
 c� � 0, and the second from �a 
 b���c 
 d� � 0. 

Now assume that a�b � c�d  is prime. It then follows from (3) that a�b � c�d  and a�c � b�d  are relatively prime. Hence, 
from (2), it must be true that a�c � b�d  divides a�d � b�c . However, this is impossible by (3). Thus a�b � c�d  must not 
be prime. 

Note. Examples of 4-tuples �a, b, c, d�  that satisfy the given conditions are �21, 18, 14, 1�  and �65, 50, 34, 11� . 
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