42nd International Mathematical Olympiad

Washington, DC, United States of America
July 8-9, 2001

Problems

Each problem is worth seven points.

Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.
Suppose that LBCA = LABC + 30° .

Prove that LCAB + LCOP < 90°.

Problem 2

Prove that

a b c

+ +
Va2 +8bc Vb2 +8ca V2 +8ab

=1

for all positive real numbers a, b and c.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

* Each contestant solved at most six problems.
* For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Problem 4
Let n be an odd integer greater than 1, and let k;, k,, ..., k, be given integers. For each of the n! permutations
a=(a,ay,...,a,)of1,2,...,n,let

n
S(a) = Zki a;.
i=1

Prove that there are two permutations b and ¢, b # c, such that n! is a divisor of S(b) — S(c).
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Problem 5
In a triangle ABC, let AP bisect LBAC , with P on BC, and let BQ bisect LABC, with Q on CA.

It is known that LBAC = 60° and that AB + BP = AQ + OB.

What are the possible angles of triangle ABC?

Problem 6

Let a, b, c, d be integers witha > b > ¢ > d > 0. Suppose that

ac+tbd=b+d+a-c)(b+d—-a+c).

Prove that a b + c d is not prime.
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Problems with Solutions

Problem 1
Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.
Suppose that LBCA = LABC + 30° .
Prove that LCAB + LCOP < 90°.

Solution

= Solution 1

Leta=LCAB,B=LABC,y=LBCA,and 6 = LCOP.Let K and Q be the reflections of A and P, respectively,
across the perpendicular bisector of BC. Let R denote the circumradius of AABC. Then OA = OB = OC = OK =R.
Furthermore, we have QP = KA because KQPA is a rectangle. Now note that

LAOK = LAOB — LKOB = LAOB - LAOC =2y -2 = 60° .

K A

()

It follows from this and from OA = OK = R that KA = R and QP = R. Therefore, using the Triangle Inequality, we
have OP+ R =0Q + OC > QC = QP + PC = R + PC. It follows that OP > PC, and hence in ACOP,LPCO > §.
Now since @ = +-LBOC = +(180° — 2LPCO) = 90° — LPCO, it indeed follows that & + & < 90°.

= Solution 2

As in the previous solution, it is enough to show that OP > PC. To this end, recall that by the (Extended) Law of
Sines, AB = 2Rsiny and AC = 2Rsinf3. Therefore, we have

BP — PC = ABcosB— A Ccosy =2R(sinycos —sin fcosy) =2 Rsin(y — B).
It follows from this and from
30°<y—-B<y<90°

that BP — PC = R . Therefore, we obtain that R + OP = BO + OP > BP = R + PC, from which OP > OC, as desired.
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= Solution 3

We first show that R* > CP-CB. To this end, since CB = 2Rsina and CP = ACcosy = 2Rsinfcosy , it suffices to
show that % > sinasinfcosy . We note that 1 > sina = sin(y + 8) = sinycosf + sinfScosy and

1< sin(y — B) = sinycos 8 — sinfcosy since 30° <y — B < 90° . It follows that % > sinfcosy and that
= > sinasinfcosy .

Now we choose a point J on BC so that CJ-CP = R? .1t follows from this and from R? > CP-CB that CJ > CB, so
that LOBC > LOJC . Since OC/CJ = PC/CO and LJCO = LOCP,we have AJCO = AOCP and LOJC = LPOC =6.
It follows that § < LOBC =90° —a or @+ 6 < 90° .

= Solution 4

On the one hand, as in the third solution, we have R> > CP-CB. On the other hand, the power of P with respect to
the circumcircle of AABC is BP- PC = R?> — OP? . From these two equations we find that

OP? =R? -BP-PC > PC-CB-BP-PC = PC?,

from which OP > PC . Therefore, as in the first solution, we conclude that @ + § < 90° .

Problem 2

Prove that

a b c

+ +
Va2 +8bc Vb2 +8ca V2 +8ab

v
[

for all positive real numbers a, b and c.

Solution

First we shall prove that

a a
4 4 4
Va2 +8bc as +b3 +c3

or equivalently, that

1\

404 a2 2,
(a3 + b3 +c3) =a’(a” +8bc).

The AM-GM inequality yields

(@ +bt +ct) = (@?) = (bt +ct)(at +at +bt et
> 2b% ¢T-4a7 bT T
= 8aTbc

Thus
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= a%(a2 +8bc),

SO

a a
4 4 4
Va2 +8bc as +b3 +c7.

Similarly, we have

1%

4
b b3
— = and
Vb2+8ca a%+b§ +(;%
C > (;%
Vc2+8ab - aT+bT 4T
Adding these three inequalities yields
a b c

v
[

+ +
Va2 +8bc Vb2 +8ca V2 +8ab

Comment. It can be shown that for any a, b, ¢ > 0 and A = §, the following inequality holds:

a N b N c . 3
V2 +Abe V2+ica VZ+iab VI+A.

Problem 3
Twenty-one girls and twenty-one boys took part in a mathematical contest.
* Each contestant solved at most six problems.

* For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Solution

= Solution 1

We introduce the following symbols: G is the set of girls at the competition and B is the set of boys, P is the set of
problems, P(g) is the set of problems solved by g € G, and P(b) is the set of problems solved by b € B. Finally, G(p)

is the set of girls that solve p € P and B(p) is the set of boys that solve p. In terms of this notation, we have that for
allge Gand b e B,

(@ [P@)| <6, |PB)| <6, () PENPD)+0o.

We wish to prove that some p € P satisfies | G(p)| =3 and | B(p) | = 3.To do this, we shall assume the contrary
and reach a contradiction by counting (two ways) all ordered triples (p, ¢, r) such that p € P(g) () P(b). With
T={(p,g,b): peP(g))P(b)}, condition (b) yields
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171 =Y > 1P@NPB)| =G| -|B| =212, N

geG beB

Assume that no p € P satisfies | G(p)| =3 and | B(p) | = 3. We begin by noting that

DG =) 1P@]<61G| and Y |B(p)| <6|B]. @

peP geG peP

(Note. The equality in (2) is obtained by a standard double-counting technique: Let y(g, p) = 1 if g solves p and
x(g, p) = 0 otherwise, and interchange the orders of summation in ), pep > ecG X (g, p).) Let

P.={peP: |G(p)| =3,
P_={peP: |G(p)]| =2

Claim.Zpepi |G(p)| = | G|; thus |G(p)| =5|G]|.Also ), |B(p)| = | B|; thus

Sper. | B()| <51B].

pEP, PEP,

Proof. Let g € G be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply that g solves some problem
p that is solved by at least [21 /67 = 4 boys. By assumption, | B(p) | = 4 implies that p € P_, so every girl solves at
least one problem in P_ . Thus

2, 16w =161, 3)

peP_

In view of (2) and (3) we have

DG =) 16 I-) IGp | <51G].

peP. peP peP_

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a problem p € P, . Thus
> peP, | B(p)| = | B, and the calculation proceeds as before using (2). O

Using the claim just established, we find

| T| 2per |G- | B(p) ]
= 2per, GO -IBP)+X,cp 1G] -|B(p)]
22 pep, |G +22,cp |B(p)]

10| G|+10|B|=20-21.

IA

IA

This contradicts (1), so the proof is complete.

http://imo.wolfram.com/



IMO 2001 Competition Problems

= Solution 2

Let us use some of the notation given in the first solution. Suppose that for every p € P either | G(p) | <2 or

| B(p)| =2.Foreach pe P,color p redif | G(p)| <2 and otherwise color it black. In this way, if p is red then

| G(p)| =2 and if p is black then | B(p)| =<2.Consider a chessboard with 21 rows, each representing one of the
girls, and 21 columns, each representing one of the boys. For each g € G and b € B, color the square corresponding
to (g, b) as follows: pick p € P(g) () P(b) and assign p's color to that square. (By condition (b), there is always an
available choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least [441 /2] = 221 squares,
and thus some row has at least [221 /217 = 11 black squares or some column has at least 11 red squares.

Suppose the row corresponding to g € G has at least 11 black squares. Then for each of 11 squares, the black prob-
lem that was chosen in assigning the color was solved by at most 2 boys. Thus we account for at least [11 /2] =6
distinct problems solved by g. In view of condition (a), g solves only these problems. But then at most 12 boys solve
a problem also solved by g, in violation of condition (b).

In exactly the same way, a contradiction is reached if we suppose that some column has at least 11 red squares.
Hence some p € P satisfies | G(p)| =3 and | B(p)| =3.

Problem 4
Let n be an odd integer greater than 1, and let k;, k,, ..., k, be given integers. For each of the n! permutations
a=(a,ap,...,a,)of 1,2, ..., n,let

S(Cl) = Zn:ki a;.
i=1

Prove that there are two permutations b and ¢, b # ¢, such that n! is a divisor of S(b) — S(c).

Solution

Let ) S(a) be the sum of S(a) over all n! permutations a = (a;, a;, ..., a,). We compute », S(a)modn! two ways,
one of which depends on the desired conclusion being false, and reach a contradiction when # is odd.

First way.In }, S(a), k; is multiplied by each i € {1, ..., n} atotal of (n — 1)! times, once for each permutation of
{1, ..., n} in which a@; = i. Thus the coefficient of k; in ) S(a) is

(n=DI(1+2++n)=(n+1)1/2.

The same is true for all k; , so

n+ 1! <&
Z S(a) = k;. (1
2 i=1
Second way. If n! is not a divisor of S(b) — S(c) for any b # c, then each S(a) must have a different remainder mod
n!. Since there are n! permutations, these remainders must be precisely the numbers 0, 1,2, ..., n! — 1. Thus
'—1)n!
> S = %rnodn!. )

Combining (1) and (2), we get

n

(n+1)! _ (n!=-1)n!

mod n!. (€))

i=1
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Now, for n odd, the left side of (3) is congruent to 0 modulo n!, while for n > 1 the right side is not congruent to O
(n! -1 1is odd). For n > 1 and odd, we have a contradiction.

Problem 5
In a triangle ABC, let AP bisect LBAC , with P on BC, and let BQ bisect LABC, with Q on CA.

It is known that LBAC = 60° and that AB + BP = AQ + OB.
What are the possible angles of triangle ABC?

Solution

Denote the angles of ABC by @ = 60°, 8, and y . Extend AB to P’ so that BP" = BP, and construct P’ on AQ so that
AP” = AP’ . Then BP'P is an isosceles triangle with base angle /2. Since

AQ+ QP” = AB+ BP' = AB + BP = AQ + OB, it follows that QP” = OB. Since AP’ P” is equilateral and AP bisects
the angle at A, we have PP’ = PP" .

I » 1

Q

A B P’
Claim. Points B, P, P” are collinear, so P coincides with C.

Proof. Suppose to the contrary that BPP” is a nondegenerate triangle. We have that
LPBQ = LPP’'B = LPP”(Q = [3/2.Thus the diagram appears as below, or else with P is on the other side of BP” . In
either case, the assumption that BPP” is nondegenerate leads to BP = PP”” = PP’ , thus to the conclusion that BPP’
is equilateral, and finally to the absurdity 8/2 = 60° so @ + 8= 60° + 120° = 180°.
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Pﬂ'

b

Thus points B, P, P” are collinear, and P”" = C as claimed.O
Since triangle BCQ is isosceles, we have 120° — =y = f3/2,s0 8 =80° and y = 40° . Thus ABC is a 60-80-40

degree triangle.

Problem 6

Leta, b, c, d be integers witha > b > ¢ > d > 0. Suppose that

ac+tbd=b+d+a-c)(b+d—-a+c).

Prove that a b + c d is not prime.
Solution

= Solution 1

Suppose to the contrary that a b + c d is prime. Note that

ab+cd=@+d)c+(b-c)a=m-gcd(a+d,b-c)

for some positive integer m . By assumption, either m = 1 or gcd(a + d, b — ¢) = 1. We consider these alternatives in
turn.

Case (i): m = 1. Then

gedla+d,b—c) = ab+cd>ab+cd—-(a—-b+c+4d)
= (@+d)y(c-1)+b-0c)(a+1)
> ged(a+d,b-oc),
which is false.

Case (ii): ged(a+d, b —c) = 1. Substituting ac +bd = (a+ d) b — (b — ¢) a for the left-hand side of
ac+bd=bB+d+a-c)(b+d—-a+c),we obtain

(a+d)yla—c—-d)=b-c)(b+c+d).
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In view of this, there exists a positive integer k such that

k(b -c),
k(a+d).

a—-c—d

b+c+d

Adding these equations, we obtain a + b = k(a + b — ¢ + d) and thus k(c — d) = (k — 1) (a + b) . Recall that
a>b>c>d.Ilf k=1 then c =d, a contradiction. If k = 2 then

5= k _ a+b S,
k-1 c—d

a contradiction.

Since a contradiction is reached in both (i) and (ii), a b + c d is not prime.

Solution 2

The equality ac+bd =(b+d+a—-c)(b+d—a+c) is equivalent to

@ —-ac+ =b+bd+d*. (D

Let ABCD be the quadrilateral with AB=a,BC=d,CD =b,AD =c,.BAD = 60°,and LBCD = 120° . Such a
quadrilateral exists in view of (1) and the Law of Cosines; the common value in (1) is BD? . Let LABC = a, so that
LCDA = 180° — a. Applying the Law of Cosines to triangles ABC and ACD gives

a?+d*—2adcosa=AC? =b* +c* +2bccosa.
Hence 2 cosa = (a*> +d*> —b* —c?)/(ad + bc), and

a?+d®>-b*—c*  (ab+cd)(ac+bd)

AC’=d*+d*-ad
ad+bc ad+bc.

Because ABCD is cyclic, Ptolemy's Theorem gives

(AC-BD)* = (ab+cd)?
It follows that

(ac+bd)(@ —-ac+c)=(ab+cd)(ad+bc). 2
(Note. Straightforward algebra can also be used obtain (2) from (1).) Next observe that
ab+cd>ac+bd>ad+bc. 3)
The first inequality follows from (a — d) (b — ¢) > 0, and the second from (a — b) (c —d) > 0.
Now assume that a b + c d is prime. It then follows from (3) thata b + cd and a ¢ + b d are relatively prime. Hence,
from (2), it must be true that a ¢ + b d divides a d + b c. However, this is impossible by (3). Thus a b + ¢ d must not

be prime.

Note. Examples of 4-tuples (a, b, ¢, d) that satisfy the given conditions are (21, 18, 14, 1) and (65, 50, 34, 11).
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