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Problem 1.
For n ≥ 2, an equilateral triangle is divided into n2 congruent smaller equilateral triangles. Determine
all ways in which real numbers can be assigned to the (n+1)(n+2)

2 vertices so that three such numbers
sum to zero whenever the three vertices form a triangle with edges parallel to the sides of the big
triangle.

Solution. We label the vertices (and the corresponding real numbers) as follows.

a1

a2 a3

a4 a5 a6

...
...

...

For n = 2, we see that
a2 + a4 + a5 = 0 = a2 + a3 + a5,

which shows that a3 = a4 and similarly a1 = a5 and a2 = a6. Now the only additional requirement is
a1 + a2 + a3 = 0, so that all solutions are of the following form, for any x, y and z with x+ y+ z = 0:

y

z x

x y z

For n = 3, observe that a1 = a7 = a10 since they all equal a5. Since also a1 + a7 + a10 = 0, they
all equal zero. By considering the top triangle, we get x = a2 = −a3 and this uniquely determines the
rest. It is easily checked that, for any real x, this is actually a solution:
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0

x −x

−x 0 x

0 x −x 0

For n ≥ 3 we can apply the same argument as above for any collection of 10 vertices. Any vertex
not on the sides of the big triangle has to equal zero, since it is the centre of such a collection of 10
vertices. Any vertex a on the sides of the big triangle forms some parallelogram similar to a4, a2, a5, a8,
where the point opposite a is in the interior of the big triangle. Since such opposite numbers are equal,
all ai have to be zero in this case.

Problem 2.
Let n be a positive integer and let a1, . . . , an be real numbers satisfying 0 ≤ ai ≤ 1 for i = 1, . . . , n.
Prove the inequality

(1− an1 )(1− an2 ) · · · (1− ann) ≤ (1− a1a2 · · · an)n.

Solution. The numbers 1− ani are positive by assumption. am–gm gives

(1− an1 )(1− an2 ) · · · (1− ann) ≤

(
(1− an1 ) + (1− an2 ) + · · ·+ (1− ann)

n

)n

=

(
1− an1 + · · ·+ ann

n

)n

.

By applying am–gm again we obtain

a1a2 · · · an ≤
an1 + · · ·+ ann

n
⇒

(
1− an1 + · · ·+ ann

n

)n

≤ (1− a1a2 · · · an)n,

and hence the desired inequality.

Remark. It is possible to use Jensen’s inequality applied to f(x) = log(1− ex).

Problem 3.
Let n > 1 be an integer. Find all non-constant real polynomials P (x) satisfying, for any real x, the
identity

P (x)P (x2)P (x3) · · ·P (xn) = P
(
x

n(n+1)
2

)
.

Solution. Answer: P (x) = xm if n is even; P (x) = ±xm if n is odd.
Consider first the case of a monomial P (x) = axm with a 6= 0. Then

ax
mn(n+1)

2 = P
(
x

n(n+1)
2

)
= P (x)P (x2)P (x3) · · ·P (xn) = axm · ax2m · · · · · axnm = anx

mn(n+1)
2
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implies an = a. Thus, a = 1 when n is even and a = ±1 when n is odd. Obviously these polynomials
satisfy the desired equality.

Suppose now that P is not a monomial. Write P (x) = axm+Q(x), where Q is non-zero polynomial
with degQ = k < m. We have

ax
mn(n+1)

2 +Q
(
x

n(n+1)
2

)
= P

(
x

n(n+1)
2

)
= P (x)P (x2)P (x3) · · ·P (xn) = (axm +Q(x))(ax2m +Q(x2)) · · · (axnm +Q(xn)).

The highest degree of a monomial, on both sides of the equality, is mn(n+1)
2 . The second highest degree

in the right-hand side is

2m+ 3m+ · · ·+ nm+ k =
m(n+ 2)(n− 1)

2
+ k,

while in the left-hand side it is kn(n+1)
2 . Thus

m(n+ 2)(n− 1)

2
+ k =

kn(n+ 1)

2
,

which leads to
(m− k)(n+ 2)(n− 1) = 0,

and so m = k, contradicting the assumption that m > k. Consequently, no polynomial of the form
axm +Q(x) fulfils the given condition.

Problem 4.
A family wears clothes of three colours: red, blue and green, with a separate, identical laundry bin for
each colour. At the beginning of the first week, all bins are empty. Each week, the family generates a
total of 10 kg of laundry (the proportion of each colour is subject to variation). The laundry is sorted
by colour and placed in the bins. Next, the heaviest bin (only one of them, if there are several that are
heaviest) is emptied and its contents washed. What is the minimal possible storing capacity required
of the laundry bins in order for them never to overflow?

Solution. Answer: 25 kg.
Each week, the accumulation of laundry increases the total amount by K = 10, after which the

washing decreases it by at least one third, because, by the pigeon-hole principle, the bin with the most
laundry must contain at least a third of the total. Hence the amount of laundry post-wash after the
nth week is bounded above by the sequence an+1 = 2

3 (an +K) with a0 = 0, which is clearly bounded
above by 2K. The total amount of laundry is less than 2K post-wash and 3K pre-wash.

Now suppose pre-wash state (a, b, c) precedes post-wash state (a, b, 0), which precedes pre-wash
state (a′, b′, c′). The relations a ≤ c and a′ ≤ a+K lead to

3K > a+ b+ c ≥ 2a ≥ 2(a′ −K),

and similarly for b′, whence a′, b′ < 5
2K. Since also c′ ≤ K, a pre-wash bin, and a fortiori a post-wash

bin, always contains less than 5
2K.

Consider now the following scenario. For a start, we keep packing the three bins equally full before
washing. Initialising at (0, 0, 0), the first week will end at ( 13K,

1
3K,

1
3K) pre-wash and ( 13K,

1
3K, 0)

post-wash, the second week at ( 59K,
5
9K,

5
9K) pre-wash and ( 59K,

5
9K, 0) post-wash, &c. Following this

scheme, we can get arbitrarily close to the state (K,K, 0) after washing. Supposing this accomplished,
placing 1

2K kg of laundry in each of the non-empty bins leaves us in a state close to ( 32K,
3
2K, 0)

pre-wash and ( 32K, 0, 0) post-wash. Finally, the next week’s worth of laundry is directed solely to the
single non-empty bin. It may thus contain any amount of laundry below 5

2K kg.
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Problem 5.
Find all functions f : R→ R satisfying the equation

|x|f(y) + yf(x) = f(xy) + f(x2) + f(f(y))

for all real numbers x and y.

Solution. Answer: all functions f(x) = c(|x| − x), where c ≥ 0.
Choosing x = y = 0, we find

f(f(0)) = −2f(0).
Denote a = f(0), so that f(a) = −2a, and choose y = 0 in the initial equation:

a|x| = a+ f(x2) + f(a) = a+ f(x2)− 2a ⇒ f(x2) = a(|x|+ 1).

In particular, f(1) = 2a. Choose (x, y) = (z2, 1) in the initial equation:

z2f(1) + f(z2) = f(z2) + f(z4) + f(f(1))

⇒ 2az2 = z2f(1) = f(z4) + f(f(1)) = a(z2 + 1) + f(2a)

⇒ az2 = a+ f(2a).

The right-hand side is constant, while the left-hand side is a quadratic function in z, which can only
happen if a = 0. (Choose z = 1 and then z = 0.)

We now conclude that f(x2) = 0, and so f(x) = 0 for all non-negative x. In particular, f(0) = 0.
Choosing x = 0 in the initial equation, we find f(f(y)) = 0 for all y. Simplifying the original equation
and swapping x and y leads to

|x|f(y) + yf(x) = f(xy) = |y|f(x) + xf(y).

Choose y = −1 and put c = f(−1)
2 :

|x|f(−1)− f(x) = f(x) + xf(−1) ⇒ f(x) =
f(−1)

2
(|x| − x) = c(|x| − x).

One easily verifies that these functions satisfy the functional equation for any parameter c ≥ 0.

Problem 6.
Two players take alternate turns in the following game. At the outset there are two piles, containing
10, 000 and 20, 000 tokens, respectively. A move consists of removing any positive number of tokens
from a single pile or removing x > 0 tokens from one pile and y > 0 tokens from the other, where x+y
is divisible by 2015. The player who cannot make a move loses. Which player has a winning strategy?

Solution. The first player wins.
He should present his opponent with one of the following positions:

(0, 0), (1, 1), (2, 2), . . . , (2014, 2014).

All these positions have different total numbers of tokens modulo 2015. Therefore, if the game starts
from two piles of arbitrary sizes, it is possible to obtain one of these positions just by the first move.
In our case

10, 000 + 20, 000 ≡ 1790mod 2015,

and the first player can leave to his opponent the position (895, 895).
Now the second type of move can no longer be carried out. If the second player removes n tokens

from one pile, the first player may always respond be removing n tokens from the other pile.
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Problem 7.
There are 100 members in a ladies’ club. Each lady has had tea (in private) with exactly 56 of the
other members of the club. The Board, consisting of the 50 most distinguished ladies, have all had tea
with one another. Prove that the entire club may be split into two groups in such a way that, within
each group, any lady has had tea with any other.

Solution. Each lady in the Board has had tea with 49 ladies within the Board, and 7 ladies without.
Each lady not in the Board has had tea with at most 49 ladies not in the Board, and at least 7 ladies
in the Board. Comparing these two observations, we conclude that each lady not in the Board has had
tea with exactly 49 ladies not in the Board and exactly 7 ladies in the Board. Hence the club may be
split into Board members and non-members.

Problem 8.
With inspiration drawn from the rectilinear network of streets in New York, the Manhattan distance
between two points (a, b) and (c, d) in the plane is defined to be

|a− c|+ |b− d|.

Suppose only two distinct Manhattan distances occur between all pairs of distinct points of some point
set. What is the maximal number of points in such a set?

Solution. Answer: nine.
Let

{(x1, y1), . . . , (xm, ym)}, where x1 ≤ · · · ≤ xm,

be the set, and suppose m ≥ 10.
A special case of the Erdős–Szekeres Theorem asserts that a real sequence of length n2+1 contains

a monotonic subsequence of length n + 1. (Proof: Given a sequence a1 . . . , an2+1, let pi denote the
length of the longest increasing subsequence ending with ai, and qi the length of the longest decreasing
subsequence ending with ai. If i < j and ai ≤ aj , then pi < pj . If ai ≥ aj , then qi < qj . Hence
all n2 + 1 pairs (pi, qi) are distinct. If all of them were to satisfy 1 ≤ pi, qi ≤ n, it would violate the
Pigeon-Hole Principle.)

Applied to the sequence y1, . . . , ym, this will produce a subsequence

yi ≤ yj ≤ yk ≤ yl or yi ≥ yj ≥ yk ≥ yl.

One of the shortest paths from (xi, yi) to (xl, yl) will pass through first (xj , yj) and then (xk, yk). At
least three distinct Manhattan distances will occur.

Conversely, among the nine points

(0, 0), (±1,±1), (±2, 0), (0,±2),

only the Manhattan distances 2 and 4 occur.

Problem 9.
Let n > 2 be an integer. A deck contains n(n−1)

2 cards, numbered

1, 2, 3, . . . ,
n(n− 1)

2
.
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Two cards form a magic pair if their numbers are consecutive, or if their numbers are 1 and n(n−1)
2 .

For which n is it possible to distribute the cards into n stacks in such a manner that, among the
cards in any two stacks, there is exactly one magic pair?

Solution 1. Answer: for all odd n.
First assume a stack contains two cards that form a magic pair; say cards number i and i + 1.

Among the cards in this stack and the stack with card number i + 2 (they might be identical), there
are two magic pairs — a contradiction. Hence no stack contains a magic pair.

Each card forms a magic pair with exactly two other cards. Hence if n is even, each stack must
contain at least dn−12 e = n

2 cards, since there are n − 1 other stacks. But then we need at least
nn

2 >
n(n−1)

2 cards — a contradiction.
In the odd case we distribute the cards like this: Let a1, a2, . . . , an be the n stacks and let n = 2m+1.

Card number 1 is put into stack a1. If card number km + i, for i = 1, 2, . . . ,m, is put into stack aj ,
then card number km+ i+1 is put into stack number aj+i, where the indices are calculated modulo n.

There are
n(n− 1)

2
=

(2m+ 1)(2m)

2
= m(2m+ 1)

cards. If we look at all the card numbers of the form km+ 1, there are exactly n = 2m + 1 of these,
and we claim that there is exactly one in each stack. Card number 1 is in stack a1, and card number
km+ 1 is in stack

a1+k(1+2+3+···+m).

Since
1 + 2 + 3 + · · ·+m =

m(m+ 1)

2

and gcd(2m+ 1, m(m+1)
2 ) = 1, all the indices

1 + k(1 + 2 + 3 + · · ·+m), k = 0, 1, 2, . . . , 2m

are different modulo n = 2m+ 1. In the same way we see that each stack contains exactly one of the
2m+ 1 cards with the numbers km+ i for a given i = 2, 3, . . . ,m.

Now look at two different stacks av and au. Then, without loss of generality, we may assume that
u = v + i for some i = 1, 2, . . . ,m (again we consider the index modulo n = 2m + 1). Since there is
a card in stack av with number km+ i, the card km+ i+ 1 is in stack av+i = au. Hence among the
cards in any two stacks there is at least one magic pair. Since there is the same number of pairs of
stacks as of magic pairs, there must be exactly one magic pair among the cards of any two stacks.

Solution 2 (found by Saint Petersburg). For the case of n odd, consider the complete graph on the
vertices 1, . . . , n with n(n−1)

2 edges. The degree of each vertex is n− 1, which is even, hence an Euler
cycle v1v2 · · · vn(n−1)

2
v1 exists. Place card number i into stack number vi. The magic pairs correspond

to edges in the cycle.

Problem 10.
A subset S of {1, 2, . . . , n} is called balanced if for every a ∈ S there exists some b ∈ S, b 6= a, such
that a+b

2 ∈ S as well.

(a) Let k > 1 be an integer and let n = 2k. Show that every subset S of {1, 2, . . . , n} with |S| > 3n
4

is balanced.

(b) Does there exist an n = 2k, with k > 1 an integer, for which every subset S of {1, 2, . . . , n} with
|S| > 2n

3 is balanced?
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Solution of part (a). Let m = n− |S|, thus m < n
4 and (as n is a multiple of 4) m ≤ n

4 − 1. Let a ∈ S.
There are n

2 − 1 elements in {1, 2, . . . , n} distinct from a and with the same parity as a. At most m
of those elements are not in S, hence at least n

2 − 1 −m ≥ n
4 of them are in S. For each such b, the

number a+b
2 is an integer, and all of these at least n

4 numbers are distinct. But at most m < n
4 of them

are not in S, so at least one is a member of S. Hence S is balanced.

Solution 1 of part (b). For convenience we work with {0, 1, . . . , n − 1} rather than {1, 2, . . . , n}; this
does not change the problem. We show that one can always find an unbalanced subset containing more
than 2n

3 elements.
Let ord2(i) denote the number of factors 2 occurring in the prime factorisation of i. We set

Tj = { i ∈ {1, 2, . . . , n− 1} | ord2(i) = j } .

Then we choose

S = {0, 1, 2, . . . , n− 1} \ (T1 ∪ T3 ∪ · · · ∪ Tl), where l =

{
k − 1 if k even,
k − 2 if k odd.

Observe that |Tj | = n
2j+1 , so

|S| = n−
(n
4
+

n

16
+ · · ·+ n

2l+1

)
= n− n ·

1
4 −

1
2l+3

1− 1
4

> n− n

3
=

2n

3
.

We show that S is not balanced. Take a = 0 ∈ S, and consider a 0 6= b ∈ S. If b is odd, then 0+b
2

is not integral. If b is even, then b ∈ T2 ∪ T4 ∪ · · · , so b
2 ∈ T1 ∪ T3 ∪ · · · , hence

b
2 6∈ S. Thus S is not

balanced.

Solution 2 of part (b). We define the sets

Aj = {2j−1 + 1, 2j−1 + 2, . . . , 2j},

and set

S = Ak ∪Ak−2 ∪ · · · ∪Al ∪ {1}, where l =

{
2 if k even,
1 if k odd.

Note that Aj ⊆ {1, 2, . . . , n} whenever j ≤ k, and that |Aj | = 2j−1. We find

|S| = 2k−1 + 2k−3 + · · ·+ 2l−1 + 1 =
2l−1 − 2k+1

1− 4
+ 1 = −2l−1

3
+

2n

3
+ 1 >

2n

3
.

We show that S is not balanced. Take a = 1 ∈ S, and consider a 1 6= b ∈ S. Then b ∈ Aj for some
j. If b is even, then 1+b

2 is not integral. If b is odd, then also 1 + b ∈ Aj , so 1+b
2 ∈ Aj−1 and does not

lie in S. Thus S is not balanced.

Solution 3 of part (b). Let us introduce the concept of lonely element as an a ∈ S for which there does
not exist a b ∈ S, distinct from a, such that a+b

2 ∈ S.
We will construct an unbalanced set S with |S| > 2n

3 for all k. For n = 4 we can use S = {1, 2, 4}
(all elements are lonely), and for n = 8 we can use S = {1, 2, 3, 5, 6, 7} (2 and 6 are lonely).

We now construct an unbalanced set S ⊆ {1, 2, . . . , 4n}, given an unbalanced set T ⊆ {1, 2, . . . , n}
with |T | > 2n

3 . Take

S = { i ∈ {1, 2, . . . , 4n} | i ≡ 1 mod 2 } ∪ { 4t− 2 | t ∈ T } .

Then
|S| = 2n+ |T | > 2n+

2n

3
=

8n

3
=

2 · 4n
3

.
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Figure 1: Problem 11.

Supposing a ∈ T is lonely, we will show that 4a− 2 ∈ S is lonely. Indeed, suppose 4a− 2 6= b ∈ S with

4a− 2 + b

2
= 2a− 1 +

b

2
∈ S.

Then b must be even, so b = 4t− 2 for some a 6= t ∈ T . But then

4a− 2 + 4t− 2

2
= 4

a+ t

2
− 2,

again an even element. However, as a is lonely we know that a+t
2 6∈ T , and hence 4a+t

2 − 2 6∈ S. We
conclude that 4a− 2 is lonely in S.

Thus S is an unbalanced set, and by induction we can find an unbalanced set of size exceeding 2n
3

for all k > 1.

Problem 11.
The diagonals of the parallelogram ABCD intersect at E. The bisectors of ∠DAE and ∠EBC intersect
at F . Assume that ECFD is a parallelogram. Determine the ratio AB : AD.

Solution. Since ECFD is a parallelogram, we have ED ‖ CF and ∠CFB = ∠EBF = ∠FBC (BF
bisects ∠DBC). So CFB is an isosceles triangle and BC = CF = ED (ECFD is a parallelogram). In
a similar manner, EC = AD. But since ABCD is a parallelogram, AD = BC, whence EC = ED. So
the diagonals of ABCD are equal, which means that ABCD is in fact a rectangle. Also, the triangles
EDA and EBC are equilateral, and so AB is twice the altitude of EDA, or AB =

√
3 ·AD.

Problem 12.
A circle passes through vertex B of the triangle ABC, intersects its sides AB and BC at points K
and L, respectively, and touches the side AC at its midpoint M . The point N on the arc BL (which
does not contain K) is such that ∠LKN = ∠ACB. Find ∠BAC given that the triangle CKN is
equilateral.

Solution. Answer: ∠BAC = 75◦.
Since ∠ACB = ∠LKN = ∠LBN , the lines AC and BN are parallel. Hence ACNB is a trapezium.

Moreover, ACNB is an isosceles trapezium, because the segment AC touches the circle s in the
midpoint (and so the trapezium is symmetrical with respect to the perpendicular bisectors of BN).
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K
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M
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K
K ′

L

M

N

Figure 2: Problem 12.

Denote by K ′ the intersection point of s and CN . Then the line KK ′ is parallel to the bases of
the trapezium. Hence M is the midpoint of arc KK ′ and the line NM is an angle bisector of the
equilateral triangle KNC.

Thus we obtain that MC =MK. Therefore the length of median KM of the triangle AKC equals
1
2AC; hence ∠AKC = 90◦. We have

2∠A = ∠KAC + ∠ACN = ∠KAC + ∠ACK + ∠KCN = 90◦ + 60◦ = 150◦,

and so ∠A = 75◦.

Problem 13.
Let D be the footpoint of the altitude from B in the triangle ABC, where AB = 1. The incentre of
triangle BCD coincides with the centroid of triangle ABC. Find the lengths of AC and BC.

Solution. Answer: AC = BC =
√

5
2 .

The centroid of ABC lies on the median CC ′. It will also, by the assumption, lie on the angle
bisector through C. Since the median and the angle bisector coincide, ABC is isosceles with AC =
BC = a.

Furthermore, the centroid lies on the median BB′ and the bisector of ∠DBC, again by hypothesis.
By the Angle Bisector Theorem,

B′D

BD
=
B′C

BC
=
a/2

a
=

1

2
.

The triangles ABD ∼ ACC ′ since they have equal angles, whence

1

a
=
AB

AC
=
AD

AC ′
=
a/2−B′D

1/2
= a−BD.

Using the fact that the length of the altitude CC ′ is
√
a2 − 1

4 , this leads to

a2 − 1 = aBD = 2|ABC| =
√
a2 − 1

4
,

or, equivalently,

a2 − 1 =

√
a2 − 1

4
.

Clearly, a > 1, and the only solution is a =
√

5
2 .
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Problem 14.
In the non-isosceles triangle ABC the altitude from A meets side BC in D. Let M be the midpoint of
BC and let N be the reflection of M in D. The circumcircle of the triangle AMN intersects the side
AB in P 6= A and the side AC in Q 6= A. Prove that AN , BQ and CP are concurrent.

Solution 1. Without loss of generality, we assume the order of the points on BC to be B, M , D, N ,
C. This implies that P is on the segment AB and Q is on the segment AC.

Since D is the midpoint of MN and AD is perpendicular to MN , the line AD is the perpendicular
bisector of MN , which contains the circumcentre of 4AMN . As A is on the perpendicular bisector
of MN , we have |AM | = |AN |. We now have ∠APM = ∠AQN . Therefore

∠CQN = 180◦ − ∠AQN = 180◦ − ∠APM = ∠BPM.

Furthermore, as NMPQ is cyclic, we have

∠NQP = 180◦ − ∠NMP = ∠BMP.

Hence

∠AQP = 180◦ − ∠CQN − ∠NQP = 180◦ − ∠BPM − ∠BMP = ∠PBM = ∠ABC.

Similarly,
∠APQ = ∠BCA.

Now we have 4APQ ∼ 4ACB. So
|AP |
|AQ|

=
|AC|
|AB|

.

Furthermore, ∠MAB = ∠MAP = ∠MNP = ∠BNP , so 4BMA ∼ 4BPN , and hence

|BN |
|BP |

=
|BA|
|BM |

.

We also have ∠CAM = ∠QAM = 180◦ − ∠QNM = ∠QNC. This implies 4CMA ∼ 4CQN , so

|CQ|
|CN |

=
|CM |
|CA|

.

Putting everything together, we find

|BN |
|BP |

· |CQ|
|CN |

· |AP |
|AQ|

=
|BA|
|BM |

· |CM |
|CA|

· |AC|
|AB|

.

As |BM | = |CM |, the right-hand side is equal to 1. This means that

|BN |
|NC|

· |CQ|
|QA|

· |AP |
|PB|

= 1.

With Ceva’s theorem we can conclude that AN , BQ and CP are concurrent.

Solution 2. We consider the same configuration as in Solution 1. Let K be the second intersection of
AD with the circumcircle of 4AMN . Since D is the midpoint of MN and AD is perpendicular to
MN , the line AD is the perpendicular bisector of MN , which contains the circumcentre of 4AMN .
So AK is a diameter of this circumcircle. Now we have ∠BPK = 90◦ = ∠BDK, so BPDK is a cyclic
quadrilateral. Also, A, M , N , K, P and Q are concyclic. Using both circles, we find

180◦ − ∠CQP = ∠AQP = ∠AKP = ∠DKP = ∠DBP = ∠CBP.
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This implies that BPQC is cyclic as well. Using the power theorem we find AP ·AB = AQ ·AC, with
directed lengths. Also, BN ·BM = BP ·BA and CN · CM = CQ · CA. Hence

AP ·AB ·BN ·BM · CQ · CA = AQ ·AC ·BP ·BA · CN · CM.

Changing the signs of all six lengths on the right-hand side and replacing MC by BM , we find

AP ·AB ·BN ·BM · CQ · CA = QA · CA · PB ·AB ·NC ·BM.

Cleaning this up, we have
AP ·BN · CQ = QA · PB ·NC,

implying
BN

NC
· CQ
QA
· AP
PB

= 1.

With Ceva’s theorem we can conclude that AN , BQ and CP are concurrent.

Problem 15.
In triangle ABC, the interior and exterior angle bisectors of ∠BAC intersect the line BC in D and
E, respectively. Let F be the second point of intersection of the line AD with the circumcircle of the
triangle ABC. Let O be the circumcentre of the triangle ABC and let D′ be the reflection of D in O.
Prove that ∠D′FE = 90◦.

Solution 1. Note that AB 6= AC, since otherwise the exterior angle bisector of ∠BAC would be parallel
to BC. So assume without loss of generality that AB < AC. Let M be the midpoint of BC and let
F ′ the reflection of F in O, which is also the second intersection of the line AE with the circumcircle
of 4ABC. We now have

∠D′FO = ∠OF ′D.

Since ∠DMF ′ = 90◦ = ∠DAF ′, the quadrilateral MDAF ′ is cyclic, thus

∠OF ′D = ∠MF ′D = ∠MAD.

Furthermore, ∠FME = 90◦ = ∠FAE, so FMAE is cyclic as well. This implies that

∠MAD = ∠MAF = ∠MEF.

Combining these three equalities we find that ∠D′FO = ∠MEF , thus

∠D′FE = ∠D′FO + ∠OFE = ∠MEF + ∠MFE = 180◦ − ∠EMF = 90◦.

Solution 2. Again, assume AB < AC and define F ′ as in the previous solution. Let G be the inter-
section of the lines DF ′ and EF .

We can easily see that FA is perpendicular to EF ′, and BC to FF ′. Now, in triangle 4EFF ′, we
have that FD and ED are altitudes, so D is the orthocentre of this triangle. Now, F ′D is an altitude
as well and we find that F ′G is perpendicular to EF . Since FF ′ is a diameter of the circumcircle of
4ABC, G must lie on this circle as well.

We now find
∠EFA = ∠GFA = ∠GF ′A = ∠DF ′A.

Also, ∠DF ′F = ∠D′FF ′. This implies that

∠D′FE = ∠D′FF ′ + ∠F ′FA+ ∠AFE = ∠DF ′F + ∠F ′FA+ ∠AF ′D = ∠F ′FA+ ∠AF ′F.
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Now, in triangle 4AFF ′ we have

∠F ′FA+ ∠AF ′F = 180◦ − ∠FAF ′ = 90◦,

as required.

Solution 3. Again, assume AB < AC. We first consider the case ∠BAC = 90◦. Define F ′ as in the
previous solution. Now O and D′ lie on BC, so 4D′FO and 4DFO are mirror images with respect
to FF ′, while 4OFE and 4OF ′E are mirror images with respect to BC. We find that

∠D′FE = ∠D′FO + ∠OFE = ∠DFO + ∠OF ′E = ∠AFF ′ + ∠FF ′A = 180◦ − ∠FAF ′ = 90◦.

Now assume that ∠BAC 6= 90◦. We consider the configuration where ∠BAC < 90◦. Let M ,
N and L be the midpoints of the line segments BC, DE and DF , respectively. Note that N is the
circumcentre of 4ADE, so we find

∠NAF = ∠NAD = ∠NDA = ∠DAC + ∠ACD

=
1

2
∠A+ ∠ACD = ∠BAF + ∠ACD = ∠BCF + ∠ACD = ∠ACF.

Hence NA is tangent to the circumcircle of 4ABC, thus NA ⊥ OA. Furthermore, we have NM ⊥
OM , so AOMN is cyclic with ON as diameter. Now, since L is the circumcentre of 4DMF , we find

∠LMN = ∠LMD = ∠LDM = ∠ADN = ∠DAN = ∠LAN,

so ANLM is cyclic. Combining this with what we found before, we now conclude that AOMLN is
cyclic with ON as diameter, thus ∠OLN = 90◦. Using a dilation with centre D and factor 2 we now
can conclude ∠D′FE = ∠OLN = 90◦.

In case ∠BAC > 90◦, the proof is similar (the cyclic quadrilateral will this time be AMON).

Solution 4. We consider the configuration where C, D, B and E are on the line BC in that order. The
other configuration can be solved analogously. Let P and R be the feet of the perpendiculars from D′

and O to the line AD, respectively, and let Q and S be the feet of the perpendiculars from D′ and O
to the line CD, respectively. Since D′ is the reflection of D with respect to O, we have PR = RD.
Since we also have OA = OF and therefore RA = RF , we obtain AD = PF . Similarly, CD = BQ.
By Pythagoras’s theorem,

D′F 2 = D′P 2 + PF 2 = 4OR2 +AD2 = 4OA2 − 4AR2 +AD2 = 4OA2 −AF 2 +AD2

and

D′E2 = D′Q2 + EQ2 = 4OS2 + EQ2 = 4OB2 − 4BS2 + EQ2 = 4OB2 −BC2 + (EB + CD)2.

And since ∠EAF = 90◦ we have
EF 2 = AE2 +AF 2.

As OA = OB, we conclude that

D′F 2 + EF 2 −D′E2 = (4OA2 −AF 2 +AD2) + (AE2 +AF 2)− (4OB2 −BC2 + (EB + CD)2)

= AE2 +AD2 +BC2 − (EB + CD)2.

By Pythagoras’s theorem again, we obtain AE2 +AD2 = ED2, and hence

D′F 2 + EF 2 −D′E2 = ED2 +BC2 − (EB + CD)2.
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We have

ED2 +BC2 = (EB +BD)2 + (BD + CD)2

= EB2 +BD2 + 2 · EB ·BD +BD2 + CD2 + 2 ·BD · CD
= EB2 + CD2 + 2 ·BD · (EB +BD + CD)

= EB2 + CD2 + 2 ·BD · EC.

By the internal and external bisector theorems, we have

BD

CD
=
BA

CA
=
BE

CE
,

hence
ED2 +BC2 = EB2 + CD2 + 2 · CD ·BE = (EB + CD)2.

So
D′F 2 + EF 2 −D′E2 = 0,

which implies that ∠D′FE = 90◦.

Problem 16.
Denote by P (n) the greatest prime divisor of n. Find all integers n ≥ 2 for which

P (n) + b
√
nc = P (n+ 1) + b

√
n+ 1c.

(Note: bxc denotes the greatest integer less than or equal to x.)

Solution. Answer: The equality holds only for n = 3.
It is easy to see that P (n) 6= P (n+ 1). Therefore we need also that b

√
nc 6= b

√
n+ 1c in order for

equality to hold. This is only possible if n+ 1 is a perfect square. In this case,

b
√
nc+ 1 = b

√
n+ 1c,

and hence P (n) = P (n+1)+1. As both P (n) and P (n+1) are primes, it must be that P (n) = 3 and
P (n+ 1) = 2.

It follows that n = 3a and n + 1 = 2b, and we are required to solve the equation 3a = 2b − 1.
Calculating modulo 3, we find that b is even. Put b = 2c:

3a = (2c − 1)(2c + 1).

As both factors cannot be divisible by 3 (their difference is 2), 2c − 1 = 1. From this we get c = 1,
which leads to n = 3.

Problem 17.
Find all positive integers n for which nn−1 − 1 is divisible by 22015, but not by 22016.

Solution. Since n must be odd, write n = 2du+ 1, where u, d ∈ N and u is odd. Now

nn−1 − 1 = (n2
d

− 1)(n2
d·(u−1) + · · ·+ n2

d·1 + 1︸ ︷︷ ︸
u

),
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and hence 22015 ‖ (nn−1 − 1) iff 22015 ‖ (n2
d − 1). (The notation pk ‖ m denotes that pk | m and

pk+1 - m.)
We factorise once more:

n2
d

− 1 = (n− 1)(n+ 1) (n2 + 1) · · · (n2
d−1

+ 1)︸ ︷︷ ︸
d−1

= 2du · 2(2d−1u+ 1) (n2 + 1) · · · (n2
d−1

+ 1)︸ ︷︷ ︸
d−1

.

If k ≥ 1, then 2 ‖ n2k + 1, and so from the above

22d ‖ 2du · 2 · (n2 + 1) · · · (n2
d−1

+ 1)︸ ︷︷ ︸
d−1

and 22015−2d ‖ (2d−1u+ 1).

It is easy to see that this is the case exactly when d = 1 and u = 22013v − 1, where v is odd.
Hence the required numbers are those of the form

n = 2(22013v − 1) + 1 = 22014v − 1,

for v a positive odd number.

Problem 18.
Let f(x) = xn + an−1x

n−1 + · · ·+ a0 be a polynomial of degree n ≥ 1 with n (not necessarily distinct)
integer roots. Assume that there exist distinct primes p0, p1, . . . , pn−1 such that ai > 1 is a power of
pi, for all i = 0, . . . , n− 1. Find all possible values of n.

Solution. Obviously all the roots have to be negative by the positivity of the coefficients. If at least two
of the roots are unequal to −1, then both of them have to be powers of p0. Now Vieta’s formulæ yield
p0 | a1, which is a contradiction. Thus we can factor f as

f(x) = (x+ a0)(x+ 1)n−1.

Expanding yields

a2 =

(
n− 1

1

)
+ a0

(
n− 1

2

)
and an−2 = a0

(
n− 1

n− 2

)
+

(
n− 1

n− 3

)
.

If n ≥ 5, we see that 2 6= n − 2 and so the two coefficients above are relatively prime, being powers
of two distinct primes. However, depending on the parity of n, we have that a2 and an−2 are both
divisible by n− 1 or n−1

2 , which is a contradiction.
For n = 1, 2, 3, 4, the following polynomials meet the requirements:

f1(x) = x+ 2

f2(x) = (x+ 2)(x+ 1) = x2 + 3x+ 2

f3(x) = (x+ 3)(x+ 1)2 = x3 + 5x2 + 7x+ 3

f4(x) = (x+ 2)(x+ 1)3 = x4 + 5x3 + 9x2 + 7x+ 2

Problem 19.
Three pairwise distinct positive integers a, b, c, with gcd(a, b, c) = 1, satisfy

a | (b− c)2, b | (c− a)2 and c | (a− b)2.

Prove that there does not exist a non-degenerate triangle with side lengths a, b, c.
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Solution. First observe that these numbers are pairwise coprime. Indeed, if, say, a and b are divisible
by a prime p, then p divides b, which divides (a− c)2; hence p divides a− c, and therefore p divides c.
Thus, p is a common divisor of these three numbers, a contradiction.

Now consider the number

M = 2ab+ 2bc+ 2ac− a2 − b2 − c2.

It is clear from the problem condition that M is divisible by a, b, c, and therefore M is divisible by
abc.

Assume that a triangle with sides a, b, c exists. Then a < b+ c, and so a2 < ab+ ac. Analogously,
we have b2 < bc + ba and c2 < ca + cb. Summing these three inequalities leads to M > 0, and hence
M ≥ abc.

On the other hand,
a2 + b2 + c2 > ab+ bc+ ac,

and therefore M < ab + bc + ac. Supposing, with no loss of generality, a > b > c, we must have
M < 3ab. Taking into account the inequality M ≥ abc, we conclude that c = 1 or c = 2 are the only
possibilities.

For c = 1 we have b < a < b+ 1 (the first inequality is our assumption, the second is the triangle
inequality), a contradiction.

For c = 2 we have b < a < b+2, i.e. a = b+1. But then 1 = (a− b)2 is not divisible by c = 2.

Problem 20.
For any integer n ≥ 2, we define An to be the number of positive integers m with the following
property: the distance from n to the nearest non-negative multiple of m is equal to the distance from
n3 to the nearest non-negative multiple of m. Find all integers n ≥ 2 for which An is odd.

(Note: The distance between two integers a and b is defined as |a− b|.)

Solution. For an integer m we consider the distance d from n to the nearest multiple of m. Then
m | n± d, which means n ≡ ±dmodm. So if, for some m, the distance from n to the nearest multiple
of m is equal to the distance from n3 to the nearest multiple of m, then n ≡ ±n3 modm.

On the other hand, if n ≡ ±n3 modm, then there exists a 0 ≤ d ≤ 1
2m such that n ≡ ±dmodm

and n3 ≡ ±dmodm, so the distance from n to the nearest multiple of m is equal to the distance from
n3 to the nearest multiple of m.

We conclude that we need to count the number of positive integers m such that n ≡ ±n3 modm,
or, equivalently, m | n3 − n or m | n3 + n. That is,

An =
∣∣{m ∈ Z+

∣∣ m | n3 − n or m | n3 + n
}∣∣

=
∣∣{m ∈ Z+

∣∣ m | n3 − n }∣∣+ ∣∣{m ∈ Z+
∣∣ m | n3 + n

}∣∣− ∣∣{m ∈ Z+
∣∣ m | n3 − n and m | n3 + n

}∣∣
=
∣∣{m ∈ Z+

∣∣ m | n3 − n }∣∣+ ∣∣{m ∈ Z+
∣∣ m | n3 + n

}∣∣− ∣∣{m ∈ Z+
∣∣ m | gcd(n3 − n, n3 + n)

}∣∣
= τ(n3 − n) + τ(n3 + n)− τ(gcd(n3 − n, n3 + n)),

where τ(k) denotes the number of (positive) divisors of a positive integer k.
Recall that τ(k) is odd if and only if k is a square. Furthermore, we have

gcd(n, n2 ± 1) = 1.

So if n3±n were a square, then both n and n2± 1 would be squares. But n2± 1 is not a square, since
n ≥ 2 and the only consecutive squares are 0, 1. Hence neither n3−n nor n3+n is a square, so the first
two terms τ(n3 − n) and τ(n3 + n) are both even. Hence An is odd if and only if gcd(n3 − n, n3 + n)
is a square.
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We have

gcd(n2 − 1, n2 + 1) = gcd(n2 − 1, 2) =

{
1 if n even,
2 if n odd.

Hence,

gcd(n3 − n, n3 + n) =

{
n if n even,
2n if n odd.

Note that 2n for n odd is never a square, since it has exactly one factor of 2. We conclude that An is
odd if and only if n is an even square.
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